Shubhanshi Sharma, Rashmi Kumari, Shailendra K. Varshney, Basudev Lahiri
{"title":"电磁纳米结构的光学生物传感","authors":"Shubhanshi Sharma, Rashmi Kumari, Shailendra K. Varshney, Basudev Lahiri","doi":"10.1016/j.revip.2020.100044","DOIUrl":null,"url":null,"abstract":"<div><p>The recent development in the field of optical biosensors based on plasmonic metamaterials, all-dielectric metamaterials and two-dimensional (2D) materials inclusive of van der Waals heterostructure have been reviewed in this article. Plasmonic metamaterials are divided based on their geometrical design, such as thin metallic film structures, an array of periodic structures, and single nanoparticle that are governed by the physical phenomenon of plasmon resonance. On the contrary, all-dielectric metamaterials based sensors are governed by the Mie scattering. Two-dimensional material exhibits high surface area to volume ratios, which makes them a strong candidates for realizing high sensitivity. This review encompasses all the latest developments over the last decade and forecasts the roadmap.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2020.100044","citationCount":"25","resultStr":"{\"title\":\"Optical biosensing with electromagnetic nanostructures\",\"authors\":\"Shubhanshi Sharma, Rashmi Kumari, Shailendra K. Varshney, Basudev Lahiri\",\"doi\":\"10.1016/j.revip.2020.100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent development in the field of optical biosensors based on plasmonic metamaterials, all-dielectric metamaterials and two-dimensional (2D) materials inclusive of van der Waals heterostructure have been reviewed in this article. Plasmonic metamaterials are divided based on their geometrical design, such as thin metallic film structures, an array of periodic structures, and single nanoparticle that are governed by the physical phenomenon of plasmon resonance. On the contrary, all-dielectric metamaterials based sensors are governed by the Mie scattering. Two-dimensional material exhibits high surface area to volume ratios, which makes them a strong candidates for realizing high sensitivity. This review encompasses all the latest developments over the last decade and forecasts the roadmap.</p></div>\",\"PeriodicalId\":37875,\"journal\":{\"name\":\"Reviews in Physics\",\"volume\":\"5 \",\"pages\":\"Article 100044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.revip.2020.100044\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405428320300071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428320300071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Optical biosensing with electromagnetic nanostructures
The recent development in the field of optical biosensors based on plasmonic metamaterials, all-dielectric metamaterials and two-dimensional (2D) materials inclusive of van der Waals heterostructure have been reviewed in this article. Plasmonic metamaterials are divided based on their geometrical design, such as thin metallic film structures, an array of periodic structures, and single nanoparticle that are governed by the physical phenomenon of plasmon resonance. On the contrary, all-dielectric metamaterials based sensors are governed by the Mie scattering. Two-dimensional material exhibits high surface area to volume ratios, which makes them a strong candidates for realizing high sensitivity. This review encompasses all the latest developments over the last decade and forecasts the roadmap.
期刊介绍:
Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.