与李代数滤波相关的可积系统

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Božidar Jovanović, Tijana Šukilović, Srdjan Vukmirović
{"title":"与李代数滤波相关的可积系统","authors":"Božidar Jovanović,&nbsp;Tijana Šukilović,&nbsp;Srdjan Vukmirović","doi":"10.1134/S1560354723010045","DOIUrl":null,"url":null,"abstract":"<div><p>In 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra <span>\\(\\mathfrak{g}_{0}\\)</span> are integrable, then their certain extensions to semisimple lie algebras <span>\\(\\mathfrak{g}\\)</span> related to the filtrations of Lie algebras\n<span>\\(\\mathfrak{g}_{0}\\subset\\mathfrak{g}_{1}\\subset\\mathfrak{g}_{2}\\dots\\subset\\mathfrak{g}_{n-1}\\subset\\mathfrak{g}_{n}=\\mathfrak{g}\\)</span> are integrable as well.\nIn particular, by taking <span>\\(\\mathfrak{g}_{0}=\\{0\\}\\)</span> and natural filtrations of <span>\\({\\mathfrak{so}}(n)\\)</span> and <span>\\(\\mathfrak{u}(n)\\)</span>, we have\nGel’fand – Cetlin integrable systems. We prove the conjecture\nfor filtrations of compact Lie algebras <span>\\(\\mathfrak{g}\\)</span>: the system is integrable in a noncommutative sense by means of polynomial integrals.\nVarious constructions of complete commutative polynomial integrals for the system are also given.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 1","pages":"44 - 61"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrable Systems Associated to the Filtrations of Lie Algebras\",\"authors\":\"Božidar Jovanović,&nbsp;Tijana Šukilović,&nbsp;Srdjan Vukmirović\",\"doi\":\"10.1134/S1560354723010045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra <span>\\\\(\\\\mathfrak{g}_{0}\\\\)</span> are integrable, then their certain extensions to semisimple lie algebras <span>\\\\(\\\\mathfrak{g}\\\\)</span> related to the filtrations of Lie algebras\\n<span>\\\\(\\\\mathfrak{g}_{0}\\\\subset\\\\mathfrak{g}_{1}\\\\subset\\\\mathfrak{g}_{2}\\\\dots\\\\subset\\\\mathfrak{g}_{n-1}\\\\subset\\\\mathfrak{g}_{n}=\\\\mathfrak{g}\\\\)</span> are integrable as well.\\nIn particular, by taking <span>\\\\(\\\\mathfrak{g}_{0}=\\\\{0\\\\}\\\\)</span> and natural filtrations of <span>\\\\({\\\\mathfrak{so}}(n)\\\\)</span> and <span>\\\\(\\\\mathfrak{u}(n)\\\\)</span>, we have\\nGel’fand – Cetlin integrable systems. We prove the conjecture\\nfor filtrations of compact Lie algebras <span>\\\\(\\\\mathfrak{g}\\\\)</span>: the system is integrable in a noncommutative sense by means of polynomial integrals.\\nVarious constructions of complete commutative polynomial integrals for the system are also given.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"28 1\",\"pages\":\"44 - 61\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354723010045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723010045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

1983年Bogoyavlenski推测,如果一个李代数\(\mathfrak{g}_{0}\)上的欧拉方程是可积的,那么它们对半简单李代数\(\mathfrak{g}\)与李代数过滤\(\mathfrak{g}_{0}\subset\mathfrak{g}_{1}\subset\mathfrak{g}_{2}\dots\subset\mathfrak{g}_{n-1}\subset\mathfrak{g}_{n}=\mathfrak{g}\)有关的某些扩展也是可积的。特别地,通过取\(\mathfrak{g}_{0}=\{0\}\)和\({\mathfrak{so}}(n)\)和\(\mathfrak{u}(n)\)的自然过滤,我们得到了可积系统。我们用多项式积分证明了紧李代数的滤波猜想\(\mathfrak{g}\):该系统在非交换意义上是可积的。给出了系统的完全交换多项式积分的各种构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable Systems Associated to the Filtrations of Lie Algebras

In 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra \(\mathfrak{g}_{0}\) are integrable, then their certain extensions to semisimple lie algebras \(\mathfrak{g}\) related to the filtrations of Lie algebras \(\mathfrak{g}_{0}\subset\mathfrak{g}_{1}\subset\mathfrak{g}_{2}\dots\subset\mathfrak{g}_{n-1}\subset\mathfrak{g}_{n}=\mathfrak{g}\) are integrable as well. In particular, by taking \(\mathfrak{g}_{0}=\{0\}\) and natural filtrations of \({\mathfrak{so}}(n)\) and \(\mathfrak{u}(n)\), we have Gel’fand – Cetlin integrable systems. We prove the conjecture for filtrations of compact Lie algebras \(\mathfrak{g}\): the system is integrable in a noncommutative sense by means of polynomial integrals. Various constructions of complete commutative polynomial integrals for the system are also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信