{"title":"一种模拟弹塑性纤维增强复合材料多种破坏机制的相场黏结区框架","authors":"Zhaoyang Hu, Xufei Suo, Minjuan Wang, Feng Jiang, Hao Huang, Yongxing Shen","doi":"10.1007/s10704-023-00712-z","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical properties of metal matrix fiber-reinforced composites depend on many aspects of their structure in a complicated way. In this paper, we propose a phase-field-cohesive-zone framework to study interface debonding, matrix cracking, and their competition in metal matrix fiber-reinforced elastoplastic composites by numerical simulation. This approach combines an explicit cohesive zone model for interface debonding and a phase field model for matrix cracking. The features of this framework are: (1) crack propagation and branching can be simulated without the need to track the cracks; (2) the interface debonding is described by the cohesive zone model, and is not directly interfered by the phase field in the bulk; (3) the cohesive interface has zero thickness instead of being regularized; (4) any reasonable cohesive law of interest is readily incorporated with very few constraints; (5) the competition of the two failure mechanisms, namely, matrix cracking and interface debonding, is captured. Accuracy of this framework is verified with existing analytical and numerical results. The proposed framework shows a potential in investigating various complicated crack behaviors in composites.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"244 1-2","pages":"43 - 59"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phase-field-cohesive-zone framework to simulate multiple failure mechanisms of elastoplastic fiber-reinforced composites\",\"authors\":\"Zhaoyang Hu, Xufei Suo, Minjuan Wang, Feng Jiang, Hao Huang, Yongxing Shen\",\"doi\":\"10.1007/s10704-023-00712-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical properties of metal matrix fiber-reinforced composites depend on many aspects of their structure in a complicated way. In this paper, we propose a phase-field-cohesive-zone framework to study interface debonding, matrix cracking, and their competition in metal matrix fiber-reinforced elastoplastic composites by numerical simulation. This approach combines an explicit cohesive zone model for interface debonding and a phase field model for matrix cracking. The features of this framework are: (1) crack propagation and branching can be simulated without the need to track the cracks; (2) the interface debonding is described by the cohesive zone model, and is not directly interfered by the phase field in the bulk; (3) the cohesive interface has zero thickness instead of being regularized; (4) any reasonable cohesive law of interest is readily incorporated with very few constraints; (5) the competition of the two failure mechanisms, namely, matrix cracking and interface debonding, is captured. Accuracy of this framework is verified with existing analytical and numerical results. The proposed framework shows a potential in investigating various complicated crack behaviors in composites.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"244 1-2\",\"pages\":\"43 - 59\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00712-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00712-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A phase-field-cohesive-zone framework to simulate multiple failure mechanisms of elastoplastic fiber-reinforced composites
The mechanical properties of metal matrix fiber-reinforced composites depend on many aspects of their structure in a complicated way. In this paper, we propose a phase-field-cohesive-zone framework to study interface debonding, matrix cracking, and their competition in metal matrix fiber-reinforced elastoplastic composites by numerical simulation. This approach combines an explicit cohesive zone model for interface debonding and a phase field model for matrix cracking. The features of this framework are: (1) crack propagation and branching can be simulated without the need to track the cracks; (2) the interface debonding is described by the cohesive zone model, and is not directly interfered by the phase field in the bulk; (3) the cohesive interface has zero thickness instead of being regularized; (4) any reasonable cohesive law of interest is readily incorporated with very few constraints; (5) the competition of the two failure mechanisms, namely, matrix cracking and interface debonding, is captured. Accuracy of this framework is verified with existing analytical and numerical results. The proposed framework shows a potential in investigating various complicated crack behaviors in composites.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.