关于两个参数的四次多项式族

Pub Date : 2020-12-06 DOI:10.1080/14689367.2020.1849031
G. Blé, F. E. Castillo-Santos, D. González, R. Valdez
{"title":"关于两个参数的四次多项式族","authors":"G. Blé, F. E. Castillo-Santos, D. González, R. Valdez","doi":"10.1080/14689367.2020.1849031","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider a family of quartic polynomials generated by the composition of two quadratic polynomials. The elements of this family have two complex parameters, however they have at most two dynamic behaviors, since every map in this family have two critical points with the same forward orbits. In this paper, we study this quartic family in the complex parameter space, and we describe the dynamical plane for some special parameters. Moreover, we analyze the parameter space for these quartic polynomials with a super attracting fixed point. We describe the connectedness locus for this family, and we prove the locally connectedness of the boundary of hyperbolic components in the parameter space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14689367.2020.1849031","citationCount":"2","resultStr":"{\"title\":\"On a quartic polynomials family of two parameters\",\"authors\":\"G. Blé, F. E. Castillo-Santos, D. González, R. Valdez\",\"doi\":\"10.1080/14689367.2020.1849031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We consider a family of quartic polynomials generated by the composition of two quadratic polynomials. The elements of this family have two complex parameters, however they have at most two dynamic behaviors, since every map in this family have two critical points with the same forward orbits. In this paper, we study this quartic family in the complex parameter space, and we describe the dynamical plane for some special parameters. Moreover, we analyze the parameter space for these quartic polynomials with a super attracting fixed point. We describe the connectedness locus for this family, and we prove the locally connectedness of the boundary of hyperbolic components in the parameter space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14689367.2020.1849031\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2020.1849031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2020.1849031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们考虑由两个二次多项式组成的一组四次多项式。这个族的元素有两个复杂的参数,但它们最多有两个动力学行为,因为这个族中的每个地图都有两个具有相同前向轨道的临界点。本文在复参数空间中研究了这个四次族,并描述了一些特殊参数的动力平面。此外,我们还分析了这些具有超吸引不动点的四次多项式的参数空间。我们描述了这个族的连通性轨迹,并证明了参数空间中双曲分量边界的局部连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a quartic polynomials family of two parameters
ABSTRACT We consider a family of quartic polynomials generated by the composition of two quadratic polynomials. The elements of this family have two complex parameters, however they have at most two dynamic behaviors, since every map in this family have two critical points with the same forward orbits. In this paper, we study this quartic family in the complex parameter space, and we describe the dynamical plane for some special parameters. Moreover, we analyze the parameter space for these quartic polynomials with a super attracting fixed point. We describe the connectedness locus for this family, and we prove the locally connectedness of the boundary of hyperbolic components in the parameter space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信