{"title":"用隐式本构方程表征不可压缩流体体和边界的非定常内部流动","authors":"Miroslav Bulíček, Josef Málek, Erika Maringová","doi":"10.1007/s00021-023-00803-w","DOIUrl":null,"url":null,"abstract":"<div><p>Long-time and large-data existence of weak solutions for initial- and boundary-value problems concerning three-dimensional flows of <i>incompressible</i> fluids is nowadays available not only for Navier–Stokes fluids but also for various fluid models where the relation between the Cauchy stress tensor and the symmetric part of the velocity gradient is <i>nonlinear</i>. The majority of such studies however concerns models where such a dependence is <i>explicit</i> (the stress is a function of the velocity gradient), which makes the class of studied models unduly restrictive. The same concerns boundary conditions, or more precisely the slipping mechanisms on the boundary, where the no-slip is still the most preferred condition considered in the literature. Our main objective is to develop a robust mathematical theory for unsteady internal flows of <i>implicitly constituted</i> incompressible fluids with implicit relations between the tangential projections of the velocity and the normal traction on the boundary. The theory covers numerous rheological models used in chemistry, biorheology, polymer and food industry as well as in geomechanics. It also includes, as special cases, nonlinear slip as well as stick–slip boundary conditions. Unlike earlier studies, the conditions characterizing admissible classes of constitutive equations are expressed by means of tools of elementary calculus. In addition, a fully constructive proof (approximation scheme) is incorporated. Finally, we focus on the question of uniqueness of such weak solutions.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00803-w.pdf","citationCount":"1","resultStr":"{\"title\":\"On Unsteady Internal Flows of Incompressible Fluids Characterized by Implicit Constitutive Equations in the Bulk and on the Boundary\",\"authors\":\"Miroslav Bulíček, Josef Málek, Erika Maringová\",\"doi\":\"10.1007/s00021-023-00803-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Long-time and large-data existence of weak solutions for initial- and boundary-value problems concerning three-dimensional flows of <i>incompressible</i> fluids is nowadays available not only for Navier–Stokes fluids but also for various fluid models where the relation between the Cauchy stress tensor and the symmetric part of the velocity gradient is <i>nonlinear</i>. The majority of such studies however concerns models where such a dependence is <i>explicit</i> (the stress is a function of the velocity gradient), which makes the class of studied models unduly restrictive. The same concerns boundary conditions, or more precisely the slipping mechanisms on the boundary, where the no-slip is still the most preferred condition considered in the literature. Our main objective is to develop a robust mathematical theory for unsteady internal flows of <i>implicitly constituted</i> incompressible fluids with implicit relations between the tangential projections of the velocity and the normal traction on the boundary. The theory covers numerous rheological models used in chemistry, biorheology, polymer and food industry as well as in geomechanics. It also includes, as special cases, nonlinear slip as well as stick–slip boundary conditions. Unlike earlier studies, the conditions characterizing admissible classes of constitutive equations are expressed by means of tools of elementary calculus. In addition, a fully constructive proof (approximation scheme) is incorporated. Finally, we focus on the question of uniqueness of such weak solutions.\\n</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-023-00803-w.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00803-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00803-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Unsteady Internal Flows of Incompressible Fluids Characterized by Implicit Constitutive Equations in the Bulk and on the Boundary
Long-time and large-data existence of weak solutions for initial- and boundary-value problems concerning three-dimensional flows of incompressible fluids is nowadays available not only for Navier–Stokes fluids but also for various fluid models where the relation between the Cauchy stress tensor and the symmetric part of the velocity gradient is nonlinear. The majority of such studies however concerns models where such a dependence is explicit (the stress is a function of the velocity gradient), which makes the class of studied models unduly restrictive. The same concerns boundary conditions, or more precisely the slipping mechanisms on the boundary, where the no-slip is still the most preferred condition considered in the literature. Our main objective is to develop a robust mathematical theory for unsteady internal flows of implicitly constituted incompressible fluids with implicit relations between the tangential projections of the velocity and the normal traction on the boundary. The theory covers numerous rheological models used in chemistry, biorheology, polymer and food industry as well as in geomechanics. It also includes, as special cases, nonlinear slip as well as stick–slip boundary conditions. Unlike earlier studies, the conditions characterizing admissible classes of constitutive equations are expressed by means of tools of elementary calculus. In addition, a fully constructive proof (approximation scheme) is incorporated. Finally, we focus on the question of uniqueness of such weak solutions.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.