{"title":"加拿大大草原上的覆盖作物会影响土壤氮循环吗?","authors":"O. Otchere, Y. Lawley, K. Congreves","doi":"10.1139/cjss-2022-0079","DOIUrl":null,"url":null,"abstract":"Abstract For one of Canada’s most important regions of crop production—the prairies—it’s uncertain if cover crops can be successfully integrated into rotations; if so, will soil nitrogen (N) cycling be influenced to benefit main crops? To address these gaps, we compared a crop rotation with cover crops (CC) vs. without cover crops (LR) from 2018 to 2021 in Saskatoon, SK. The main crops were grown in sequence of wheat–canola–potato–pea; the cover crops included red clover, berseem clover/oat mix, fall rye, and a brassica cover. Yield and aboveground biomass were collected each year and analyzed to determine crop yield and N use efficiency (NUE). Soil N availability was monitored in various ways, that is, by assessing pre-plant soil nitrate, soil inorganic N (SIN) supply rate, and potentially mineralizable N (PMN). We found that the influence on soil N dynamics was restricted to the non-growing season where cover crops reduced SIN supply rate and nitrate content compared to the conventional practice without cover crops. Yet, rotations with vs. without cover crop did not differ in crop NUEs, yields, or in-season N dynamics. We found some evidence that diversifying rotations with cover crops may help the system to function more like perennial systems in terms of regulating N in the long run; but had limited impact during the three years studied. To ensure that cover crops are effective and functional on the prairies, innovative design approaches are needed to adapt cover crops to reach soil health goals under prairie conditions.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Do cover crops on the Canadian prairies affect soil nitrogen cycling?\",\"authors\":\"O. Otchere, Y. Lawley, K. Congreves\",\"doi\":\"10.1139/cjss-2022-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For one of Canada’s most important regions of crop production—the prairies—it’s uncertain if cover crops can be successfully integrated into rotations; if so, will soil nitrogen (N) cycling be influenced to benefit main crops? To address these gaps, we compared a crop rotation with cover crops (CC) vs. without cover crops (LR) from 2018 to 2021 in Saskatoon, SK. The main crops were grown in sequence of wheat–canola–potato–pea; the cover crops included red clover, berseem clover/oat mix, fall rye, and a brassica cover. Yield and aboveground biomass were collected each year and analyzed to determine crop yield and N use efficiency (NUE). Soil N availability was monitored in various ways, that is, by assessing pre-plant soil nitrate, soil inorganic N (SIN) supply rate, and potentially mineralizable N (PMN). We found that the influence on soil N dynamics was restricted to the non-growing season where cover crops reduced SIN supply rate and nitrate content compared to the conventional practice without cover crops. Yet, rotations with vs. without cover crop did not differ in crop NUEs, yields, or in-season N dynamics. We found some evidence that diversifying rotations with cover crops may help the system to function more like perennial systems in terms of regulating N in the long run; but had limited impact during the three years studied. To ensure that cover crops are effective and functional on the prairies, innovative design approaches are needed to adapt cover crops to reach soil health goals under prairie conditions.\",\"PeriodicalId\":9384,\"journal\":{\"name\":\"Canadian Journal of Soil Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjss-2022-0079\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0079","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Do cover crops on the Canadian prairies affect soil nitrogen cycling?
Abstract For one of Canada’s most important regions of crop production—the prairies—it’s uncertain if cover crops can be successfully integrated into rotations; if so, will soil nitrogen (N) cycling be influenced to benefit main crops? To address these gaps, we compared a crop rotation with cover crops (CC) vs. without cover crops (LR) from 2018 to 2021 in Saskatoon, SK. The main crops were grown in sequence of wheat–canola–potato–pea; the cover crops included red clover, berseem clover/oat mix, fall rye, and a brassica cover. Yield and aboveground biomass were collected each year and analyzed to determine crop yield and N use efficiency (NUE). Soil N availability was monitored in various ways, that is, by assessing pre-plant soil nitrate, soil inorganic N (SIN) supply rate, and potentially mineralizable N (PMN). We found that the influence on soil N dynamics was restricted to the non-growing season where cover crops reduced SIN supply rate and nitrate content compared to the conventional practice without cover crops. Yet, rotations with vs. without cover crop did not differ in crop NUEs, yields, or in-season N dynamics. We found some evidence that diversifying rotations with cover crops may help the system to function more like perennial systems in terms of regulating N in the long run; but had limited impact during the three years studied. To ensure that cover crops are effective and functional on the prairies, innovative design approaches are needed to adapt cover crops to reach soil health goals under prairie conditions.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.