{"title":"声纳和纳米:生态兼容的比基内利反应的完美协同作用","authors":"Marzieh Tahmasbi, Nadiya Koukabi, Ozra Armandpour","doi":"10.1515/hc-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we evaluated the performance of nano-γ-Fe2O3–SO3H catalyst in the Biginelli reaction and synthesized 3,4-dihydropyrimidine-2-(1H)-ones. This reaction was carried out under solvent-free and ultrasonic irradiation conditions and belonged to one-pot multicomponent reactions (MCRs) with an adopted aromatic aldehyde, ethyl acetoacetate, and urea as starting materials for the beginning of the reaction. The synthesized materials were efficient in synthesizing 3,4-dihydropyrimidine-2-(1H)-ones via the Biginelli reaction under reaction conditions. Thus, the advantages of using nano-γ-Fe2O3–SO3H in the Biginelli reaction are short reaction time, high efficiency, green method, solvent free, and cost-effective. Furthermore, nano-γ-Fe2O3–SO3H as a heterogeneous catalyst can be recycled five times without significantly reducing catalytic activity. Graphical abstract","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"28 1","pages":"1 - 10"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sono and nano: A perfect synergy for eco-compatible Biginelli reaction\",\"authors\":\"Marzieh Tahmasbi, Nadiya Koukabi, Ozra Armandpour\",\"doi\":\"10.1515/hc-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we evaluated the performance of nano-γ-Fe2O3–SO3H catalyst in the Biginelli reaction and synthesized 3,4-dihydropyrimidine-2-(1H)-ones. This reaction was carried out under solvent-free and ultrasonic irradiation conditions and belonged to one-pot multicomponent reactions (MCRs) with an adopted aromatic aldehyde, ethyl acetoacetate, and urea as starting materials for the beginning of the reaction. The synthesized materials were efficient in synthesizing 3,4-dihydropyrimidine-2-(1H)-ones via the Biginelli reaction under reaction conditions. Thus, the advantages of using nano-γ-Fe2O3–SO3H in the Biginelli reaction are short reaction time, high efficiency, green method, solvent free, and cost-effective. Furthermore, nano-γ-Fe2O3–SO3H as a heterogeneous catalyst can be recycled five times without significantly reducing catalytic activity. Graphical abstract\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"28 1\",\"pages\":\"1 - 10\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2022-0003\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2022-0003","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Sono and nano: A perfect synergy for eco-compatible Biginelli reaction
Abstract In this study, we evaluated the performance of nano-γ-Fe2O3–SO3H catalyst in the Biginelli reaction and synthesized 3,4-dihydropyrimidine-2-(1H)-ones. This reaction was carried out under solvent-free and ultrasonic irradiation conditions and belonged to one-pot multicomponent reactions (MCRs) with an adopted aromatic aldehyde, ethyl acetoacetate, and urea as starting materials for the beginning of the reaction. The synthesized materials were efficient in synthesizing 3,4-dihydropyrimidine-2-(1H)-ones via the Biginelli reaction under reaction conditions. Thus, the advantages of using nano-γ-Fe2O3–SO3H in the Biginelli reaction are short reaction time, high efficiency, green method, solvent free, and cost-effective. Furthermore, nano-γ-Fe2O3–SO3H as a heterogeneous catalyst can be recycled five times without significantly reducing catalytic activity. Graphical abstract
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.