{"title":"低压易泄漏气井凝胶塞暂堵压井技术研究","authors":"Xiong Ying, Xu Yuan, Zhang Yadong, F. Ziyi","doi":"10.2118/204213-pa","DOIUrl":null,"url":null,"abstract":"\n A gel-plug system for temporary blocking technology is proposed in this paper to address the prevalent leakage of killing fluid in low-pressure wells; the low technical strength of existing gel plugs for temporary blocking in well killing; difficult-to-control crosslinking time; and gel embrittlement and the difficulty of breaking certain gel plugs. A mixture of etherified galactomannan plant gum, isooctanol polyoxyethylene ether surfactant, and oil phase was used as a thickener. An inorganic salt complex containing long-chain polyhydroxy alcohol was used as a crosslinker and the concentration of long-chain polyhydroxy alcohol far exceeds the theoretical amount required to complex the metal ion. A mixture of polyhydroxy alcohol with a small amount of weak acid was used as a crosslinking regulator. Finally, a mixture of sodium thiosulfate and long-chain quaternary ammonium salt surfactant was used as a stabilizer. Laboratory evaluations showed that this gel-plug system can be directly pumped into the wellbore after being mixed homogeneously, and the viscosity of the system on the surface can be controlled by the amount of crosslinking regulator. The viscosity of the gel-plug system after gelling was high (viscoelastic solid colloid); the initial viscosity reached 30 000 mPa·s at 120°C and retained a semisolid gel shape after aging for 72 hours. Right-angle thickening occurred when the gel warmed to target-zone temperature. The acidic liquid breaker acted quickly, and the viscosity of the broken fluid was lower than 5 mPa·s after 1 to 4 hours. This gel plug for temporary blocking and well-killing technology was successfully applied in a low-pressure, leakage-prone gas well. No gas, pressure, or liquid remained in the open well after killing, the wellhead was successfully replaced, and the tubing was successfully removed. The gel plug also exhibited self-healing: The hole formed by the tubing could be filled and sealed automatically by the gel plug in the annulus. The static friction (outer wall) of 73-mm tubing in the gel plug was 39.6 t/km; the dynamic friction (outer wall) after tubing removal was 7.2 t/km. This gel plug thus shows promise as a temporary blocking technology in workover operations of low-pressure, leakage-prone gas wells.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/204213-pa","citationCount":"7","resultStr":"{\"title\":\"Study of Gel Plug for Temporary Blocking and Well-Killing Technology in Low-Pressure, Leakage-Prone Gas Well\",\"authors\":\"Xiong Ying, Xu Yuan, Zhang Yadong, F. Ziyi\",\"doi\":\"10.2118/204213-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A gel-plug system for temporary blocking technology is proposed in this paper to address the prevalent leakage of killing fluid in low-pressure wells; the low technical strength of existing gel plugs for temporary blocking in well killing; difficult-to-control crosslinking time; and gel embrittlement and the difficulty of breaking certain gel plugs. A mixture of etherified galactomannan plant gum, isooctanol polyoxyethylene ether surfactant, and oil phase was used as a thickener. An inorganic salt complex containing long-chain polyhydroxy alcohol was used as a crosslinker and the concentration of long-chain polyhydroxy alcohol far exceeds the theoretical amount required to complex the metal ion. A mixture of polyhydroxy alcohol with a small amount of weak acid was used as a crosslinking regulator. Finally, a mixture of sodium thiosulfate and long-chain quaternary ammonium salt surfactant was used as a stabilizer. Laboratory evaluations showed that this gel-plug system can be directly pumped into the wellbore after being mixed homogeneously, and the viscosity of the system on the surface can be controlled by the amount of crosslinking regulator. The viscosity of the gel-plug system after gelling was high (viscoelastic solid colloid); the initial viscosity reached 30 000 mPa·s at 120°C and retained a semisolid gel shape after aging for 72 hours. Right-angle thickening occurred when the gel warmed to target-zone temperature. The acidic liquid breaker acted quickly, and the viscosity of the broken fluid was lower than 5 mPa·s after 1 to 4 hours. This gel plug for temporary blocking and well-killing technology was successfully applied in a low-pressure, leakage-prone gas well. No gas, pressure, or liquid remained in the open well after killing, the wellhead was successfully replaced, and the tubing was successfully removed. The gel plug also exhibited self-healing: The hole formed by the tubing could be filled and sealed automatically by the gel plug in the annulus. The static friction (outer wall) of 73-mm tubing in the gel plug was 39.6 t/km; the dynamic friction (outer wall) after tubing removal was 7.2 t/km. This gel plug thus shows promise as a temporary blocking technology in workover operations of low-pressure, leakage-prone gas wells.\",\"PeriodicalId\":22071,\"journal\":{\"name\":\"Spe Production & Operations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2118/204213-pa\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spe Production & Operations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/204213-pa\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/204213-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Study of Gel Plug for Temporary Blocking and Well-Killing Technology in Low-Pressure, Leakage-Prone Gas Well
A gel-plug system for temporary blocking technology is proposed in this paper to address the prevalent leakage of killing fluid in low-pressure wells; the low technical strength of existing gel plugs for temporary blocking in well killing; difficult-to-control crosslinking time; and gel embrittlement and the difficulty of breaking certain gel plugs. A mixture of etherified galactomannan plant gum, isooctanol polyoxyethylene ether surfactant, and oil phase was used as a thickener. An inorganic salt complex containing long-chain polyhydroxy alcohol was used as a crosslinker and the concentration of long-chain polyhydroxy alcohol far exceeds the theoretical amount required to complex the metal ion. A mixture of polyhydroxy alcohol with a small amount of weak acid was used as a crosslinking regulator. Finally, a mixture of sodium thiosulfate and long-chain quaternary ammonium salt surfactant was used as a stabilizer. Laboratory evaluations showed that this gel-plug system can be directly pumped into the wellbore after being mixed homogeneously, and the viscosity of the system on the surface can be controlled by the amount of crosslinking regulator. The viscosity of the gel-plug system after gelling was high (viscoelastic solid colloid); the initial viscosity reached 30 000 mPa·s at 120°C and retained a semisolid gel shape after aging for 72 hours. Right-angle thickening occurred when the gel warmed to target-zone temperature. The acidic liquid breaker acted quickly, and the viscosity of the broken fluid was lower than 5 mPa·s after 1 to 4 hours. This gel plug for temporary blocking and well-killing technology was successfully applied in a low-pressure, leakage-prone gas well. No gas, pressure, or liquid remained in the open well after killing, the wellhead was successfully replaced, and the tubing was successfully removed. The gel plug also exhibited self-healing: The hole formed by the tubing could be filled and sealed automatically by the gel plug in the annulus. The static friction (outer wall) of 73-mm tubing in the gel plug was 39.6 t/km; the dynamic friction (outer wall) after tubing removal was 7.2 t/km. This gel plug thus shows promise as a temporary blocking technology in workover operations of low-pressure, leakage-prone gas wells.
期刊介绍:
SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.