膜技术在果汁澄清浓缩中的最新进展

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Rosalam Sarbatly, Jamilah Sariau, Duduku Krishnaiah
{"title":"膜技术在果汁澄清浓缩中的最新进展","authors":"Rosalam Sarbatly,&nbsp;Jamilah Sariau,&nbsp;Duduku Krishnaiah","doi":"10.1007/s12393-023-09346-2","DOIUrl":null,"url":null,"abstract":"<div><p>Fruit juices are traditionally processed thermally to avoid microorganisms’ growth and increase their shelf-life. The concentration of juices by thermal evaporation is carried out to reduce their volume and consequently the storage and transportation costs. However, many studies revealed that the high-temperature operation destroys many valuable nutrients and the aroma of the juice. Currently, membrane technology has emerged as an alternative to conventional processes to clarify and concentrate fruit juices due to its ability to improve juices’ safety, quality, and nutritional values. Low-cost, low-energy requirement, and minimal footprint make membrane technology an attractive choice for industrial adoption. The low-temperature operation that preserves the nutritional and sensorial quality of the juice can fulfill the market demand for healthy juice products. In this review, the pressure-driven membrane processes, including microfiltration, ultrafiltration, and reverse osmosis; osmotic distillation; membrane distillation; and forward osmosis that have been widely investigated in recent years, are discussed.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 3","pages":"420 - 437"},"PeriodicalIF":5.3000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices\",\"authors\":\"Rosalam Sarbatly,&nbsp;Jamilah Sariau,&nbsp;Duduku Krishnaiah\",\"doi\":\"10.1007/s12393-023-09346-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fruit juices are traditionally processed thermally to avoid microorganisms’ growth and increase their shelf-life. The concentration of juices by thermal evaporation is carried out to reduce their volume and consequently the storage and transportation costs. However, many studies revealed that the high-temperature operation destroys many valuable nutrients and the aroma of the juice. Currently, membrane technology has emerged as an alternative to conventional processes to clarify and concentrate fruit juices due to its ability to improve juices’ safety, quality, and nutritional values. Low-cost, low-energy requirement, and minimal footprint make membrane technology an attractive choice for industrial adoption. The low-temperature operation that preserves the nutritional and sensorial quality of the juice can fulfill the market demand for healthy juice products. In this review, the pressure-driven membrane processes, including microfiltration, ultrafiltration, and reverse osmosis; osmotic distillation; membrane distillation; and forward osmosis that have been widely investigated in recent years, are discussed.</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"15 3\",\"pages\":\"420 - 437\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-023-09346-2\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-023-09346-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

果汁传统上是热处理的,以避免微生物的生长,延长其保质期。通过热蒸发浓缩果汁是为了减少它们的体积,从而降低储存和运输成本。然而,许多研究表明,高温操作破坏了许多有价值的营养成分和果汁的香气。目前,由于膜技术能够提高果汁的安全性、质量和营养价值,它已成为澄清和浓缩果汁的传统工艺的替代方案。低成本、低能耗和最小的足迹使膜技术成为工业应用的一个有吸引力的选择。低温加工保留了果汁的营养和感官品质,满足了市场对健康果汁产品的需求。本文综述了压力驱动膜工艺,包括微滤、超滤和反渗透;渗透蒸馏;膜蒸馏;并对近年来广泛研究的正向渗透进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices

Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices

Fruit juices are traditionally processed thermally to avoid microorganisms’ growth and increase their shelf-life. The concentration of juices by thermal evaporation is carried out to reduce their volume and consequently the storage and transportation costs. However, many studies revealed that the high-temperature operation destroys many valuable nutrients and the aroma of the juice. Currently, membrane technology has emerged as an alternative to conventional processes to clarify and concentrate fruit juices due to its ability to improve juices’ safety, quality, and nutritional values. Low-cost, low-energy requirement, and minimal footprint make membrane technology an attractive choice for industrial adoption. The low-temperature operation that preserves the nutritional and sensorial quality of the juice can fulfill the market demand for healthy juice products. In this review, the pressure-driven membrane processes, including microfiltration, ultrafiltration, and reverse osmosis; osmotic distillation; membrane distillation; and forward osmosis that have been widely investigated in recent years, are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Engineering Reviews
Food Engineering Reviews FOOD SCIENCE & TECHNOLOGY-
CiteScore
14.20
自引率
1.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信