A. Ibrahim, P. Kumam, A. Abubakar, Jamilu Abubakar
{"title":"压缩感知中信号重构的一种下降三项无导数方法","authors":"A. Ibrahim, P. Kumam, A. Abubakar, Jamilu Abubakar","doi":"10.37193/cjm.2022.02.13","DOIUrl":null,"url":null,"abstract":"\"Many real-world phenomena in engineering, economics, statistical inference, compressed sensing and machine learning involve finding sparse solutions to under-determined or ill-conditioned equations. Our interest in this paper is to introduce a derivative-free method for recovering sparse signal and blurred image arising in compressed sensing by solving a nonlinear equation involving a monotone operator. The global convergence of the proposed method is established under the assumptions of monotonicity and Lipschitz continuity of the underlying operator. Numerical experiments are performed to illustrate the efficiency of the proposed method in the reconstruction of sparse signals and blurred images.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"A descent three-term derivative-free method for signal reconstruction in compressive sensing\\\"\",\"authors\":\"A. Ibrahim, P. Kumam, A. Abubakar, Jamilu Abubakar\",\"doi\":\"10.37193/cjm.2022.02.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Many real-world phenomena in engineering, economics, statistical inference, compressed sensing and machine learning involve finding sparse solutions to under-determined or ill-conditioned equations. Our interest in this paper is to introduce a derivative-free method for recovering sparse signal and blurred image arising in compressed sensing by solving a nonlinear equation involving a monotone operator. The global convergence of the proposed method is established under the assumptions of monotonicity and Lipschitz continuity of the underlying operator. Numerical experiments are performed to illustrate the efficiency of the proposed method in the reconstruction of sparse signals and blurred images.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.02.13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
"A descent three-term derivative-free method for signal reconstruction in compressive sensing"
"Many real-world phenomena in engineering, economics, statistical inference, compressed sensing and machine learning involve finding sparse solutions to under-determined or ill-conditioned equations. Our interest in this paper is to introduce a derivative-free method for recovering sparse signal and blurred image arising in compressed sensing by solving a nonlinear equation involving a monotone operator. The global convergence of the proposed method is established under the assumptions of monotonicity and Lipschitz continuity of the underlying operator. Numerical experiments are performed to illustrate the efficiency of the proposed method in the reconstruction of sparse signals and blurred images."
期刊介绍:
Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.