通过拓扑优化和增材制造设计和生产创新涡轮机械部件

IF 0.9 Q4 ENGINEERING, MECHANICAL
E. Meli, A. Rindi, A. Ridolfi, R. Furferi, F. Buonamici, G. Iurisci, S. Corbò, F. Cangioli
{"title":"通过拓扑优化和增材制造设计和生产创新涡轮机械部件","authors":"E. Meli, A. Rindi, A. Ridolfi, R. Furferi, F. Buonamici, G. Iurisci, S. Corbò, F. Cangioli","doi":"10.1155/2019/9546831","DOIUrl":null,"url":null,"abstract":"The present paper proposes a methodology to design and manufacture optimized turbomachinery components by leveraging the potential of Topology Optimization (TO) and Additive Manufacturing (AM). The method envisages the use of TO to define the best configuration of the rotoric components in terms of both static and dynamic behavior with a resultant reduction of overall weight. Eventually, the topology-optimized component is manufactured by using appropriate materials that can guarantee valid mechanical performances. The proposed strategy has been applied to a 2D impeller used for centrifugal compressors to prove the effectiveness of a TO+AM-based approach. Although this approach has never been extensively used before to centrifugal compressors and expanders, its application on rotor and stator components might unlock several benefits: tuning the natural frequencies, a reduction in the stress level, and a lighter weight of the rotating part. These objectives can be reached alone or in combination, performing a single analysis or a multiple analyses optimization. Finally, the introduction of AM technologies as standard manufacturing resources could bring sensible benefits with respect to the time to production and availability of components. Such aspects are essential in the Oil and Gas context, when dealing with new projects but also for service operations.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9546831","citationCount":"12","resultStr":"{\"title\":\"Design and Production of Innovative Turbomachinery Components via Topology Optimization and Additive Manufacturing\",\"authors\":\"E. Meli, A. Rindi, A. Ridolfi, R. Furferi, F. Buonamici, G. Iurisci, S. Corbò, F. Cangioli\",\"doi\":\"10.1155/2019/9546831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper proposes a methodology to design and manufacture optimized turbomachinery components by leveraging the potential of Topology Optimization (TO) and Additive Manufacturing (AM). The method envisages the use of TO to define the best configuration of the rotoric components in terms of both static and dynamic behavior with a resultant reduction of overall weight. Eventually, the topology-optimized component is manufactured by using appropriate materials that can guarantee valid mechanical performances. The proposed strategy has been applied to a 2D impeller used for centrifugal compressors to prove the effectiveness of a TO+AM-based approach. Although this approach has never been extensively used before to centrifugal compressors and expanders, its application on rotor and stator components might unlock several benefits: tuning the natural frequencies, a reduction in the stress level, and a lighter weight of the rotating part. These objectives can be reached alone or in combination, performing a single analysis or a multiple analyses optimization. Finally, the introduction of AM technologies as standard manufacturing resources could bring sensible benefits with respect to the time to production and availability of components. Such aspects are essential in the Oil and Gas context, when dealing with new projects but also for service operations.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/9546831\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/9546831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/9546831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种利用拓扑优化(to)和增材制造(AM)的潜力来设计和制造优化涡轮机械部件的方法。该方法设想使用TO在静态和动态行为方面定义旋转部件的最佳配置,从而减少总重量。最终,通过使用适当的材料来制造拓扑优化的部件,以保证有效的机械性能。将该方法应用于离心压缩机的二维叶轮,验证了基于to + am方法的有效性。虽然这种方法以前从未广泛用于离心压缩机和膨胀机,但它在转子和定子部件上的应用可能会带来几个好处:调整固有频率,降低应力水平,减轻旋转部件的重量。这些目标可以单独或组合实现,执行单个分析或多个分析优化。最后,引入增材制造技术作为标准制造资源,可以在生产时间和部件可用性方面带来明显的好处。在油气行业中,无论是处理新项目还是服务操作,这些方面都是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Production of Innovative Turbomachinery Components via Topology Optimization and Additive Manufacturing
The present paper proposes a methodology to design and manufacture optimized turbomachinery components by leveraging the potential of Topology Optimization (TO) and Additive Manufacturing (AM). The method envisages the use of TO to define the best configuration of the rotoric components in terms of both static and dynamic behavior with a resultant reduction of overall weight. Eventually, the topology-optimized component is manufactured by using appropriate materials that can guarantee valid mechanical performances. The proposed strategy has been applied to a 2D impeller used for centrifugal compressors to prove the effectiveness of a TO+AM-based approach. Although this approach has never been extensively used before to centrifugal compressors and expanders, its application on rotor and stator components might unlock several benefits: tuning the natural frequencies, a reduction in the stress level, and a lighter weight of the rotating part. These objectives can be reached alone or in combination, performing a single analysis or a multiple analyses optimization. Finally, the introduction of AM technologies as standard manufacturing resources could bring sensible benefits with respect to the time to production and availability of components. Such aspects are essential in the Oil and Gas context, when dealing with new projects but also for service operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信