J. Paszula, A. Maranda, K. Nikolczuk, Agnieszka Giercuszkiewicz
求助PDF
{"title":"双氧水铝粉矿用炸药爆轰参数的修正","authors":"J. Paszula, A. Maranda, K. Nikolczuk, Agnieszka Giercuszkiewicz","doi":"10.22211/cejem/145031","DOIUrl":null,"url":null,"abstract":"Presently, due to rising environmental consciousness, numerous actions are being taken to prevent devastation of the natural environment. If explosive mixtures are manufactured in an insufficiently controlled manner, they contain too much ammonium nitrate and generate nitrogen oxides (NOx), which are both harmful for living organism and responsible for negative weather phenomena. However, the products from decomposition of hydrogen peroxide are only oxygen and hydrogen, which are both environmentally friendly. This paper presents the results of research on the impact of two types of aluminium powder on the detonation parameters of mining explosives containing hydrogen peroxide 60% as an oxidiser. The detonation velocities were measured by means of short circuit sensors. Direct measurement of the blast wave overpressure was performed with piezoelectric sensors and the positive phase impulse Central European Journal of Energetic Materials ISSN 1733-7178; e-ISSN 2353-1843 Copyright © 2021 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland 478 J. Paszula, A. Maranda, K. Nikolczuk, A. Giercuszkiewicz Copyright © 2021 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland was analyzed. Measurement of the explosive strength was made by the ballistic pendulum method for 10 g samples. The results of these experiments showed that the addition of both types of aluminium, as well as their content in the explosive mixture, have a significant impact on all of the measured parameters.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modification of the Detonation Parameters of Mining Explosives Containing Hydrogen Peroxide and Aluminium Powder\",\"authors\":\"J. Paszula, A. Maranda, K. Nikolczuk, Agnieszka Giercuszkiewicz\",\"doi\":\"10.22211/cejem/145031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presently, due to rising environmental consciousness, numerous actions are being taken to prevent devastation of the natural environment. If explosive mixtures are manufactured in an insufficiently controlled manner, they contain too much ammonium nitrate and generate nitrogen oxides (NOx), which are both harmful for living organism and responsible for negative weather phenomena. However, the products from decomposition of hydrogen peroxide are only oxygen and hydrogen, which are both environmentally friendly. This paper presents the results of research on the impact of two types of aluminium powder on the detonation parameters of mining explosives containing hydrogen peroxide 60% as an oxidiser. The detonation velocities were measured by means of short circuit sensors. Direct measurement of the blast wave overpressure was performed with piezoelectric sensors and the positive phase impulse Central European Journal of Energetic Materials ISSN 1733-7178; e-ISSN 2353-1843 Copyright © 2021 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland 478 J. Paszula, A. Maranda, K. Nikolczuk, A. Giercuszkiewicz Copyright © 2021 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland was analyzed. Measurement of the explosive strength was made by the ballistic pendulum method for 10 g samples. The results of these experiments showed that the addition of both types of aluminium, as well as their content in the explosive mixture, have a significant impact on all of the measured parameters.\",\"PeriodicalId\":9679,\"journal\":{\"name\":\"Central European Journal of Energetic Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Energetic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22211/cejem/145031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Energetic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22211/cejem/145031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2
引用
批量引用
Modification of the Detonation Parameters of Mining Explosives Containing Hydrogen Peroxide and Aluminium Powder
Presently, due to rising environmental consciousness, numerous actions are being taken to prevent devastation of the natural environment. If explosive mixtures are manufactured in an insufficiently controlled manner, they contain too much ammonium nitrate and generate nitrogen oxides (NOx), which are both harmful for living organism and responsible for negative weather phenomena. However, the products from decomposition of hydrogen peroxide are only oxygen and hydrogen, which are both environmentally friendly. This paper presents the results of research on the impact of two types of aluminium powder on the detonation parameters of mining explosives containing hydrogen peroxide 60% as an oxidiser. The detonation velocities were measured by means of short circuit sensors. Direct measurement of the blast wave overpressure was performed with piezoelectric sensors and the positive phase impulse Central European Journal of Energetic Materials ISSN 1733-7178; e-ISSN 2353-1843 Copyright © 2021 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland 478 J. Paszula, A. Maranda, K. Nikolczuk, A. Giercuszkiewicz Copyright © 2021 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland was analyzed. Measurement of the explosive strength was made by the ballistic pendulum method for 10 g samples. The results of these experiments showed that the addition of both types of aluminium, as well as their content in the explosive mixture, have a significant impact on all of the measured parameters.