{"title":"Kirchhoff型问题外域正解的存在性","authors":"Liqian Jia, Xinfu Li, Shiwang Ma","doi":"10.1017/S001309152300010X","DOIUrl":null,"url":null,"abstract":"Abstract We consider the following Kirchhoff-type problem in an unbounded exterior domain $\\Omega\\subset\\mathbb{R}^{3}$: (*)\n\\begin{align}\n\\left\\{\n\\begin{array}{ll}\n-\\left(a+b\\displaystyle{\\int}_{\\Omega}|\\nabla u|^{2}\\,{\\rm d}x\\right)\\triangle u+\\lambda u=f(u), & x\\in\\Omega,\\\\\n\\\\\nu=0, & x\\in\\partial \\Omega,\\\\\n\\end{array}\\right.\n\\end{align}where a > 0, $b\\geq0$, and λ > 0 are constants, $\\partial\\Omega\\neq\\emptyset$, $\\mathbb{R}^{3}\\backslash\\Omega$ is bounded, $u\\in H_{0}^{1}(\\Omega)$, and $f\\in C^1(\\mathbb{R},\\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if \\begin{equation*}-\\Delta u+\\lambda u=f(u), \\qquad x\\in \\mathbb R^3 \\end{equation*}has only finite number of positive solutions in $H^1(\\mathbb R^3)$ and the diameter of the hole $\\mathbb R^3\\setminus \\Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive solutions for Kirchhoff-type problem in exterior domains\",\"authors\":\"Liqian Jia, Xinfu Li, Shiwang Ma\",\"doi\":\"10.1017/S001309152300010X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the following Kirchhoff-type problem in an unbounded exterior domain $\\\\Omega\\\\subset\\\\mathbb{R}^{3}$: (*)\\n\\\\begin{align}\\n\\\\left\\\\{\\n\\\\begin{array}{ll}\\n-\\\\left(a+b\\\\displaystyle{\\\\int}_{\\\\Omega}|\\\\nabla u|^{2}\\\\,{\\\\rm d}x\\\\right)\\\\triangle u+\\\\lambda u=f(u), & x\\\\in\\\\Omega,\\\\\\\\\\n\\\\\\\\\\nu=0, & x\\\\in\\\\partial \\\\Omega,\\\\\\\\\\n\\\\end{array}\\\\right.\\n\\\\end{align}where a > 0, $b\\\\geq0$, and λ > 0 are constants, $\\\\partial\\\\Omega\\\\neq\\\\emptyset$, $\\\\mathbb{R}^{3}\\\\backslash\\\\Omega$ is bounded, $u\\\\in H_{0}^{1}(\\\\Omega)$, and $f\\\\in C^1(\\\\mathbb{R},\\\\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if \\\\begin{equation*}-\\\\Delta u+\\\\lambda u=f(u), \\\\qquad x\\\\in \\\\mathbb R^3 \\\\end{equation*}has only finite number of positive solutions in $H^1(\\\\mathbb R^3)$ and the diameter of the hole $\\\\mathbb R^3\\\\setminus \\\\Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S001309152300010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S001309152300010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of positive solutions for Kirchhoff-type problem in exterior domains
Abstract We consider the following Kirchhoff-type problem in an unbounded exterior domain $\Omega\subset\mathbb{R}^{3}$: (*)
\begin{align}
\left\{
\begin{array}{ll}
-\left(a+b\displaystyle{\int}_{\Omega}|\nabla u|^{2}\,{\rm d}x\right)\triangle u+\lambda u=f(u), & x\in\Omega,\\
\\
u=0, & x\in\partial \Omega,\\
\end{array}\right.
\end{align}where a > 0, $b\geq0$, and λ > 0 are constants, $\partial\Omega\neq\emptyset$, $\mathbb{R}^{3}\backslash\Omega$ is bounded, $u\in H_{0}^{1}(\Omega)$, and $f\in C^1(\mathbb{R},\mathbb{R})$ is subcritical and superlinear near infinity. Under some mild conditions, we prove that if \begin{equation*}-\Delta u+\lambda u=f(u), \qquad x\in \mathbb R^3 \end{equation*}has only finite number of positive solutions in $H^1(\mathbb R^3)$ and the diameter of the hole $\mathbb R^3\setminus \Omega$ is small enough, then the problem (*) admits a positive solution. Same conclusion holds true if Ω is fixed and λ > 0 is small. To our best knowledge, there is no similar result published in the literature concerning the existence of positive solutions to the above Kirchhoff equation in exterior domains.