M. Taghizadehfard, S. Hosseini, M. Pierantozzi, M. Alavianmehr
{"title":"扰动硬二聚体链状态方程的密度和等温压缩率:在纳米流体中的应用","authors":"M. Taghizadehfard, S. Hosseini, M. Pierantozzi, M. Alavianmehr","doi":"10.1515/jnet-2022-0046","DOIUrl":null,"url":null,"abstract":"Abstract Densities and isothermal compressibilities of several nanofluids were modelled using a perturbed hard-chain equation of state (EoS) by an attractive term from Yukawa tail in 273–363 K range and pressure up to 45 MPa. The nanofluids of interest comprise TiO2-Anatase (-A), TiO2-Rutile (-R), SnO2, Co3O4, CuO, ZnO, and Al2O3 as nanoparticles dispersed in ethylene glycol, water, poly ethylene glycol, ethylene glycol + water, and poly ethylene glycol + water as base fluids. The EoS was capable of estimating 1397 density data of 9 nanofluids with the overall average absolute deviations (AAD) of 0.90%. The coefficients of isothermal compressibility of 6 selected nanofluids were also predicted using the EoS with the AAD of 5.74% for 1095 data points examined. The PHDC EoS was not capable of estimating the excess volumes of 3 selected EG-, PEG-, and water-based nanofluids accurately as the relative deviations from the literature data were greater than 34%, even though the trend of results against the nanoparticle concentration was in accord with the literature. To further investigate the density prediction, we have trained a neural network with a single hidden layer and 17 neurons which was able to predict the densities of nanofluids accurately.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"48 1","pages":"55 - 73"},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Densities and isothermal compressibilities from perturbed hard-dimer-chain equation of state: application to nanofluids\",\"authors\":\"M. Taghizadehfard, S. Hosseini, M. Pierantozzi, M. Alavianmehr\",\"doi\":\"10.1515/jnet-2022-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Densities and isothermal compressibilities of several nanofluids were modelled using a perturbed hard-chain equation of state (EoS) by an attractive term from Yukawa tail in 273–363 K range and pressure up to 45 MPa. The nanofluids of interest comprise TiO2-Anatase (-A), TiO2-Rutile (-R), SnO2, Co3O4, CuO, ZnO, and Al2O3 as nanoparticles dispersed in ethylene glycol, water, poly ethylene glycol, ethylene glycol + water, and poly ethylene glycol + water as base fluids. The EoS was capable of estimating 1397 density data of 9 nanofluids with the overall average absolute deviations (AAD) of 0.90%. The coefficients of isothermal compressibility of 6 selected nanofluids were also predicted using the EoS with the AAD of 5.74% for 1095 data points examined. The PHDC EoS was not capable of estimating the excess volumes of 3 selected EG-, PEG-, and water-based nanofluids accurately as the relative deviations from the literature data were greater than 34%, even though the trend of results against the nanoparticle concentration was in accord with the literature. To further investigate the density prediction, we have trained a neural network with a single hidden layer and 17 neurons which was able to predict the densities of nanofluids accurately.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"48 1\",\"pages\":\"55 - 73\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0046\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0046","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Densities and isothermal compressibilities from perturbed hard-dimer-chain equation of state: application to nanofluids
Abstract Densities and isothermal compressibilities of several nanofluids were modelled using a perturbed hard-chain equation of state (EoS) by an attractive term from Yukawa tail in 273–363 K range and pressure up to 45 MPa. The nanofluids of interest comprise TiO2-Anatase (-A), TiO2-Rutile (-R), SnO2, Co3O4, CuO, ZnO, and Al2O3 as nanoparticles dispersed in ethylene glycol, water, poly ethylene glycol, ethylene glycol + water, and poly ethylene glycol + water as base fluids. The EoS was capable of estimating 1397 density data of 9 nanofluids with the overall average absolute deviations (AAD) of 0.90%. The coefficients of isothermal compressibility of 6 selected nanofluids were also predicted using the EoS with the AAD of 5.74% for 1095 data points examined. The PHDC EoS was not capable of estimating the excess volumes of 3 selected EG-, PEG-, and water-based nanofluids accurately as the relative deviations from the literature data were greater than 34%, even though the trend of results against the nanoparticle concentration was in accord with the literature. To further investigate the density prediction, we have trained a neural network with a single hidden layer and 17 neurons which was able to predict the densities of nanofluids accurately.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.