基于虚旋转中心模块化组合的类型综合及其应用

IF 0.9 Q4 ENGINEERING, MECHANICAL
Xinning Li, Qishuo Zhang, Zongsu Zhang, Xianhai Yang, Hu Wu, Yongbo Li, Hailong Qu
{"title":"基于虚旋转中心模块化组合的类型综合及其应用","authors":"Xinning Li, Qishuo Zhang, Zongsu Zhang, Xianhai Yang, Hu Wu, Yongbo Li, Hailong Qu","doi":"10.1155/2022/5216327","DOIUrl":null,"url":null,"abstract":"Type synthesis of mechanical structure is of great significance to the realization of mechanism target function, systematization, and stability of mechanical device. The type synthesis method of multilinkage robot has been given high demands with increasing number of degrees of freedom and high flexibility in special occasions. In order to improve the workspace and flexibility of mechanism, this paper studies the existing type synthesis theory and proposes a type synthesis method of modular combination with virtual rotation centers. Firstly, modular units are built. Secondly, modular units are expanded according to the needed paths. In the end, the expanded modular units are combined to form the kinematic linkages. Based on the proposed method, the configuration design of the aerial working platform and the self-adaptive levelling platform is completed. The stabilities of two platforms are checked by modal analysis. The prototype products are manufactured, respectively, for further verifying validity of the method. The designed aerial working platform with virtual rotation centers can achieve 360° rotating large workspace, more compact mechanical structure, and short arrival time at the same height than the common scissor-type and mast-type aerial working platforms. The designed adaptive levelling platform is tested that ensures the levelling of the upper surface at different inclinations. The method can provide new idea for the mechanism configuration and expand the application scope of new mechanisms.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type Synthesis Based on Modular Combination with Virtual Rotation Center and Application\",\"authors\":\"Xinning Li, Qishuo Zhang, Zongsu Zhang, Xianhai Yang, Hu Wu, Yongbo Li, Hailong Qu\",\"doi\":\"10.1155/2022/5216327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type synthesis of mechanical structure is of great significance to the realization of mechanism target function, systematization, and stability of mechanical device. The type synthesis method of multilinkage robot has been given high demands with increasing number of degrees of freedom and high flexibility in special occasions. In order to improve the workspace and flexibility of mechanism, this paper studies the existing type synthesis theory and proposes a type synthesis method of modular combination with virtual rotation centers. Firstly, modular units are built. Secondly, modular units are expanded according to the needed paths. In the end, the expanded modular units are combined to form the kinematic linkages. Based on the proposed method, the configuration design of the aerial working platform and the self-adaptive levelling platform is completed. The stabilities of two platforms are checked by modal analysis. The prototype products are manufactured, respectively, for further verifying validity of the method. The designed aerial working platform with virtual rotation centers can achieve 360° rotating large workspace, more compact mechanical structure, and short arrival time at the same height than the common scissor-type and mast-type aerial working platforms. The designed adaptive levelling platform is tested that ensures the levelling of the upper surface at different inclinations. The method can provide new idea for the mechanism configuration and expand the application scope of new mechanisms.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5216327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5216327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

机械结构的类型综合对实现机构目标功能、实现机械装置的系统化和稳定性具有重要意义。随着多连杆机器人自由度的不断增加和在特殊场合的高灵活性,对多连杆机器人的类型综合提出了更高的要求。为了提高机构的工作空间和灵活性,研究了现有的类型综合理论,提出了一种带虚拟旋转中心的模块化组合类型综合方法。首先,构建模块化单元。其次,根据需要的路径对模块单元进行扩展;最后,将扩展的模块单元组合成运动机构。在此基础上,完成了高空作业平台和自适应调平平台的结构设计。通过模态分析对两个平台的稳定性进行了校核。为了进一步验证方法的有效性,分别制作了原型产品。所设计的具有虚拟旋转中心的高空作业平台,与常见的剪刀式和桅杆式高空作业平台相比,可实现360°旋转大工作空间,机械结构更紧凑,到达同一高度的时间更短。对所设计的自适应调平平台进行了测试,保证了不同倾角下的上表面调平。该方法为机构配置提供了新的思路,扩大了新型机构的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type Synthesis Based on Modular Combination with Virtual Rotation Center and Application
Type synthesis of mechanical structure is of great significance to the realization of mechanism target function, systematization, and stability of mechanical device. The type synthesis method of multilinkage robot has been given high demands with increasing number of degrees of freedom and high flexibility in special occasions. In order to improve the workspace and flexibility of mechanism, this paper studies the existing type synthesis theory and proposes a type synthesis method of modular combination with virtual rotation centers. Firstly, modular units are built. Secondly, modular units are expanded according to the needed paths. In the end, the expanded modular units are combined to form the kinematic linkages. Based on the proposed method, the configuration design of the aerial working platform and the self-adaptive levelling platform is completed. The stabilities of two platforms are checked by modal analysis. The prototype products are manufactured, respectively, for further verifying validity of the method. The designed aerial working platform with virtual rotation centers can achieve 360° rotating large workspace, more compact mechanical structure, and short arrival time at the same height than the common scissor-type and mast-type aerial working platforms. The designed adaptive levelling platform is tested that ensures the levelling of the upper surface at different inclinations. The method can provide new idea for the mechanism configuration and expand the application scope of new mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信