基于颜色、灰度、高级纹理、形状特征和具有优化粒子群优化的随机森林分类器的内容图像检索

IF 3.3 Q2 ENGINEERING, BIOMEDICAL
Dr. MANOHARAN SUBRAMANIAN, Velmurugan Lingamuthu, Chandran Venkatesan, S. Perumal
{"title":"基于颜色、灰度、高级纹理、形状特征和具有优化粒子群优化的随机森林分类器的内容图像检索","authors":"Dr. MANOHARAN SUBRAMANIAN, Velmurugan Lingamuthu, Chandran Venkatesan, S. Perumal","doi":"10.1155/2022/3211793","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for Content-Based Image Retrieval (CBIR) has been addressed by extracting colour, gray, advanced texture, and shape features for input query images. Contour-based shape feature extraction methods and image moment extraction techniques are used to extract the shape features and shape invariant features. The informative features are selected from extracted features and combined colour, gray, texture, and shape features by using PSO. The target image has been retrieved for the given query image by training the random forest classifier. The proposed colour, gray, advanced texture, shape feature, and random forest classifier with optimized PSO (CGATSFRFOPSO) provide efficient retrieval of images in a large-scale database. The main objective of this research work is to improve the efficiency and effectiveness of the CBIR system by extracting the features like colour, gray, texture, and shape from database images and query images. These extracted features are processed in various levels like removing redundancy by optimal feature selection and fusion by optimal weighted linear combination. The Particle Swarm Optimization algorithm is used for selecting the informative features from gray and colour and texture features. The matching accuracy and the speed of image retrieval are improved by an ensemble of machine learning algorithms for the similarity search.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2022 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Content-Based Image Retrieval Using Colour, Gray, Advanced Texture, Shape Features, and Random Forest Classifier with Optimized Particle Swarm Optimization\",\"authors\":\"Dr. MANOHARAN SUBRAMANIAN, Velmurugan Lingamuthu, Chandran Venkatesan, S. Perumal\",\"doi\":\"10.1155/2022/3211793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new approach for Content-Based Image Retrieval (CBIR) has been addressed by extracting colour, gray, advanced texture, and shape features for input query images. Contour-based shape feature extraction methods and image moment extraction techniques are used to extract the shape features and shape invariant features. The informative features are selected from extracted features and combined colour, gray, texture, and shape features by using PSO. The target image has been retrieved for the given query image by training the random forest classifier. The proposed colour, gray, advanced texture, shape feature, and random forest classifier with optimized PSO (CGATSFRFOPSO) provide efficient retrieval of images in a large-scale database. The main objective of this research work is to improve the efficiency and effectiveness of the CBIR system by extracting the features like colour, gray, texture, and shape from database images and query images. These extracted features are processed in various levels like removing redundancy by optimal feature selection and fusion by optimal weighted linear combination. The Particle Swarm Optimization algorithm is used for selecting the informative features from gray and colour and texture features. The matching accuracy and the speed of image retrieval are improved by an ensemble of machine learning algorithms for the similarity search.\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3211793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3211793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于内容的图像检索(CBIR)的新方法,即提取输入查询图像的颜色、灰度、高级纹理和形状特征。采用基于轮廓的形状特征提取方法和图像矩提取技术提取形状特征和形状不变特征。利用粒子群算法从提取的特征中选择信息特征,并结合颜色、灰度、纹理和形状特征。通过训练随机森林分类器,对给定的查询图像检索到目标图像。提出的颜色、灰度、高级纹理、形状特征和随机森林分类器与优化的粒子群算法(CGATSFRFOPSO)提供了大规模数据库中图像的高效检索。本研究的主要目的是通过从数据库图像和查询图像中提取颜色、灰度、纹理、形状等特征,提高CBIR系统的效率和有效性。对提取的特征进行最优特征选择去除冗余和最优加权线性组合融合等不同层次的处理。采用粒子群算法从灰度、颜色和纹理特征中选择信息特征。通过对相似度搜索的机器学习算法的集成,提高了匹配精度和图像检索速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-Based Image Retrieval Using Colour, Gray, Advanced Texture, Shape Features, and Random Forest Classifier with Optimized Particle Swarm Optimization
In this paper, a new approach for Content-Based Image Retrieval (CBIR) has been addressed by extracting colour, gray, advanced texture, and shape features for input query images. Contour-based shape feature extraction methods and image moment extraction techniques are used to extract the shape features and shape invariant features. The informative features are selected from extracted features and combined colour, gray, texture, and shape features by using PSO. The target image has been retrieved for the given query image by training the random forest classifier. The proposed colour, gray, advanced texture, shape feature, and random forest classifier with optimized PSO (CGATSFRFOPSO) provide efficient retrieval of images in a large-scale database. The main objective of this research work is to improve the efficiency and effectiveness of the CBIR system by extracting the features like colour, gray, texture, and shape from database images and query images. These extracted features are processed in various levels like removing redundancy by optimal feature selection and fusion by optimal weighted linear combination. The Particle Swarm Optimization algorithm is used for selecting the informative features from gray and colour and texture features. The matching accuracy and the speed of image retrieval are improved by an ensemble of machine learning algorithms for the similarity search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信