机械合金化技术制备羟基磷灰石/氧化铝纳米复合材料的微观结构和弹性性能

Q3 Biochemistry, Genetics and Molecular Biology
{"title":"机械合金化技术制备羟基磷灰石/氧化铝纳米复合材料的微观结构和弹性性能","authors":"","doi":"10.33263/briac134.395","DOIUrl":null,"url":null,"abstract":"Although hydroxyapatite (HA) has exceptional biological qualities that inspire researchers to employ it as an appealing biomaterial for various purposes, its usage in hard tissue replacement applications is severely restricted because of its fragility. In order to create nanocomposites with the necessary mechanical properties for biomedical applications, HA was produced, and various amounts of alumina (Al2O3) were added to it. Additionally, the phase composition of the powdered nanocomposites was examined using the X-ray diffraction (XRD) technique. Crystal sizes, lattice strain, and dislocation density were all estimated as well. In order to measure the produced nanocomposite powders’ physical and elastic characteristics using the Archimedes method and ultrasonic non-destructive technique, they were then pressed and sintered at 1000 °C. The resulting information made it clear that further increases in the weight percentages of Al2O3 resulted in a 10.25, 25.64, and 33.33% reduction in crystal size. As a result of adding more Al2O3-up to 20 weight, percent-the results also showed that this properties-microhardness, compressive strength, Young’s modulus, elastic modulus, bulk modulus, shear modulus, and Poisson’s ratio-were improved by 109, 36.29, 95.5, 100.59, 104.97, 92.84 and 9.5%, respectively. Unfortunately, it increased its porosity by considerable amounts. It might be argued that the generated nanocomposites are favorable for biomedical applications.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microstructure and Elastic Properties of Hydroxyapatite/Alumina Nanocomposites Prepared by Mechanical Alloying Technique for Biomedical Applications\",\"authors\":\"\",\"doi\":\"10.33263/briac134.395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although hydroxyapatite (HA) has exceptional biological qualities that inspire researchers to employ it as an appealing biomaterial for various purposes, its usage in hard tissue replacement applications is severely restricted because of its fragility. In order to create nanocomposites with the necessary mechanical properties for biomedical applications, HA was produced, and various amounts of alumina (Al2O3) were added to it. Additionally, the phase composition of the powdered nanocomposites was examined using the X-ray diffraction (XRD) technique. Crystal sizes, lattice strain, and dislocation density were all estimated as well. In order to measure the produced nanocomposite powders’ physical and elastic characteristics using the Archimedes method and ultrasonic non-destructive technique, they were then pressed and sintered at 1000 °C. The resulting information made it clear that further increases in the weight percentages of Al2O3 resulted in a 10.25, 25.64, and 33.33% reduction in crystal size. As a result of adding more Al2O3-up to 20 weight, percent-the results also showed that this properties-microhardness, compressive strength, Young’s modulus, elastic modulus, bulk modulus, shear modulus, and Poisson’s ratio-were improved by 109, 36.29, 95.5, 100.59, 104.97, 92.84 and 9.5%, respectively. Unfortunately, it increased its porosity by considerable amounts. It might be argued that the generated nanocomposites are favorable for biomedical applications.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

摘要

尽管羟基磷灰石(HA)具有非凡的生物学特性,激发了研究人员将其作为一种有吸引力的生物材料用于各种用途,但由于其脆性,其在硬组织替代应用中的应用受到严重限制。为了制备具有生物医学应用所需机械性能的纳米复合材料,制备了HA,并在其中添加了不同量的氧化铝(Al2O3)。此外,使用X射线衍射(XRD)技术检测了粉末状纳米复合材料的相组成。晶体尺寸、晶格应变和位错密度也都得到了估计。为了使用阿基米德法和超声波无损检测技术测量所制备的纳米复合粉末的物理和弹性特性,然后在1000°C下对其进行压制和烧结。所得信息清楚地表明,Al2O3重量百分比的进一步增加导致晶体尺寸减小10.25%、25.64和33.33%。结果还表明,添加更多的Al2O3至20重量%时,该性能的显微硬度、抗压强度、杨氏模量、弹性模量、体积模量、剪切模量和泊松比分别提高了109、36.29、95.5、100.59、104.97、92.84和9.5%。不幸的是,它增加了大量的孔隙率。可以说,所产生的纳米复合材料有利于生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure and Elastic Properties of Hydroxyapatite/Alumina Nanocomposites Prepared by Mechanical Alloying Technique for Biomedical Applications
Although hydroxyapatite (HA) has exceptional biological qualities that inspire researchers to employ it as an appealing biomaterial for various purposes, its usage in hard tissue replacement applications is severely restricted because of its fragility. In order to create nanocomposites with the necessary mechanical properties for biomedical applications, HA was produced, and various amounts of alumina (Al2O3) were added to it. Additionally, the phase composition of the powdered nanocomposites was examined using the X-ray diffraction (XRD) technique. Crystal sizes, lattice strain, and dislocation density were all estimated as well. In order to measure the produced nanocomposite powders’ physical and elastic characteristics using the Archimedes method and ultrasonic non-destructive technique, they were then pressed and sintered at 1000 °C. The resulting information made it clear that further increases in the weight percentages of Al2O3 resulted in a 10.25, 25.64, and 33.33% reduction in crystal size. As a result of adding more Al2O3-up to 20 weight, percent-the results also showed that this properties-microhardness, compressive strength, Young’s modulus, elastic modulus, bulk modulus, shear modulus, and Poisson’s ratio-were improved by 109, 36.29, 95.5, 100.59, 104.97, 92.84 and 9.5%, respectively. Unfortunately, it increased its porosity by considerable amounts. It might be argued that the generated nanocomposites are favorable for biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信