一种在血细胞分离中应用的颗粒沉淀动手学习工具的评估

IF 3.5 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Kitana M. Kaiphanliam , Olusola O. Adesope , Bernard J. Van Wie
{"title":"一种在血细胞分离中应用的颗粒沉淀动手学习工具的评估","authors":"Kitana M. Kaiphanliam ,&nbsp;Olusola O. Adesope ,&nbsp;Bernard J. Van Wie","doi":"10.1016/j.ece.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Chemical engineers frequently contribute to the advancement of the medical field; however, medical applications are often only covered in elective courses. To introduce medical applications into the core curriculum, we implemented a hands-on learning tool that portrays blood separation principles through microbead settling in a core third-year chemical engineering separations class. Test scores from twenty-six students show significant growth at </span><em>p</em> &lt; 0.001 from Pretest to Posttest I at average values of 41 % and 68 %, respectively. Posttest II scores reveal a significantly higher average score of 84 % for students who sat through lecture before the hands-on experiment in comparison to 75 % for students who first had the hands-on experiment then lecture with statistical significance of <em>p</em> = 0.046 and a moderate Cohen’s <em>d</em><span> effect size of 0.442. Students report positive, lasting impressions from the guided-learning worksheet and hands-on learning experience on their feedback surveys and one-on-one interviews. Retention assessments from four students six months post-intervention reveal retention of concepts with an average test score of 74 %. These outcomes suggest hands-on learning tools are most impactful on conceptual and motivational gains when supplemented with pre-experiment lectures and quality complementary learning materials.</span></p></div><div><h3>Tweetable Abstract</h3><p>A hands-on learning tool containing microbeads suspended in fluid shows blood separation principles and results in significant learning gains in a core chemical engineering separations class.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"45 ","pages":"Pages 28-40"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of a particle sedimentation hands-on learning tool with application in blood cell separations\",\"authors\":\"Kitana M. Kaiphanliam ,&nbsp;Olusola O. Adesope ,&nbsp;Bernard J. Van Wie\",\"doi\":\"10.1016/j.ece.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Chemical engineers frequently contribute to the advancement of the medical field; however, medical applications are often only covered in elective courses. To introduce medical applications into the core curriculum, we implemented a hands-on learning tool that portrays blood separation principles through microbead settling in a core third-year chemical engineering separations class. Test scores from twenty-six students show significant growth at </span><em>p</em> &lt; 0.001 from Pretest to Posttest I at average values of 41 % and 68 %, respectively. Posttest II scores reveal a significantly higher average score of 84 % for students who sat through lecture before the hands-on experiment in comparison to 75 % for students who first had the hands-on experiment then lecture with statistical significance of <em>p</em> = 0.046 and a moderate Cohen’s <em>d</em><span> effect size of 0.442. Students report positive, lasting impressions from the guided-learning worksheet and hands-on learning experience on their feedback surveys and one-on-one interviews. Retention assessments from four students six months post-intervention reveal retention of concepts with an average test score of 74 %. These outcomes suggest hands-on learning tools are most impactful on conceptual and motivational gains when supplemented with pre-experiment lectures and quality complementary learning materials.</span></p></div><div><h3>Tweetable Abstract</h3><p>A hands-on learning tool containing microbeads suspended in fluid shows blood separation principles and results in significant learning gains in a core chemical engineering separations class.</p></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":\"45 \",\"pages\":\"Pages 28-40\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772823000325\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772823000325","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

化学工程师经常为医学领域的进步做出贡献;然而,医学应用通常只包括在选修课程中。为了将医学应用引入核心课程,我们在三年级的核心化学工程分离课上实施了一个动手学习工具,通过微珠沉淀描绘血液分离原理。26名学生的测试成绩在p <从前测到后测,平均值分别为41%和68%。后测II的分数显示,在动手实验之前坐完讲座的学生的平均分数为84%,而首先进行动手实验然后再进行讲座的学生的平均分数为75%,统计学意义为p = 0.046,适度的科恩d效应大小为0.442。学生们在反馈调查和一对一访谈中报告了从指导性学习工作表和实际学习经验中获得的积极而持久的印象。干预六个月后对四名学生进行的记忆评估显示,他们对概念的记忆平均分数为74%。这些结果表明,当与实验前讲座和高质量的补充学习材料相辅相成时,动手学习工具对概念和动机收益的影响最大。包含悬浮在流体中的微珠的动手学习工具显示血液分离原理,并在核心化学工程分离类中获得显着的学习收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of a particle sedimentation hands-on learning tool with application in blood cell separations

Chemical engineers frequently contribute to the advancement of the medical field; however, medical applications are often only covered in elective courses. To introduce medical applications into the core curriculum, we implemented a hands-on learning tool that portrays blood separation principles through microbead settling in a core third-year chemical engineering separations class. Test scores from twenty-six students show significant growth at p < 0.001 from Pretest to Posttest I at average values of 41 % and 68 %, respectively. Posttest II scores reveal a significantly higher average score of 84 % for students who sat through lecture before the hands-on experiment in comparison to 75 % for students who first had the hands-on experiment then lecture with statistical significance of p = 0.046 and a moderate Cohen’s d effect size of 0.442. Students report positive, lasting impressions from the guided-learning worksheet and hands-on learning experience on their feedback surveys and one-on-one interviews. Retention assessments from four students six months post-intervention reveal retention of concepts with an average test score of 74 %. These outcomes suggest hands-on learning tools are most impactful on conceptual and motivational gains when supplemented with pre-experiment lectures and quality complementary learning materials.

Tweetable Abstract

A hands-on learning tool containing microbeads suspended in fluid shows blood separation principles and results in significant learning gains in a core chemical engineering separations class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
17.90%
发文量
30
审稿时长
31 days
期刊介绍: Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信