抗菌剂与微生物生态学

IF 2.7 Q3 MICROBIOLOGY
P. Di Martino
{"title":"抗菌剂与微生物生态学","authors":"P. Di Martino","doi":"10.3934/microbiol.2022001","DOIUrl":null,"url":null,"abstract":"Antimicrobials are therapeutic substances used to prevent or treat infections. Disinfectants are antimicrobial agents applied to non-living surfaces. Every year, several thousand tonnes of antimicrobials and their by-products are released into the environment and in particular into the aquatic environment. This type of xenobiotic has ecological consequences in the natural environment but also in technological environments such as wastewater treatment plants and methane fermentation sewage sludge treatment plants. The constant exposure of microbial communities not only to high concentrations but also to sub-inhibitory concentrations of antibiotics is a key element in the development of antibiotic resistance in aquatic environments and in soils. The future of antimicrobials lies in the development of biosourced or bioinspired molecules. The observation and deciphering of interactions between living organisms is the key to this development.","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 1","pages":"1 - 4"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Antimicrobial agents and microbial ecology\",\"authors\":\"P. Di Martino\",\"doi\":\"10.3934/microbiol.2022001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobials are therapeutic substances used to prevent or treat infections. Disinfectants are antimicrobial agents applied to non-living surfaces. Every year, several thousand tonnes of antimicrobials and their by-products are released into the environment and in particular into the aquatic environment. This type of xenobiotic has ecological consequences in the natural environment but also in technological environments such as wastewater treatment plants and methane fermentation sewage sludge treatment plants. The constant exposure of microbial communities not only to high concentrations but also to sub-inhibitory concentrations of antibiotics is a key element in the development of antibiotic resistance in aquatic environments and in soils. The future of antimicrobials lies in the development of biosourced or bioinspired molecules. The observation and deciphering of interactions between living organisms is the key to this development.\",\"PeriodicalId\":46108,\"journal\":{\"name\":\"AIMS Microbiology\",\"volume\":\"8 1\",\"pages\":\"1 - 4\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/microbiol.2022001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2022001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

抗菌药物是用于预防或治疗感染的治疗物质。消毒剂是应用于非活性表面的抗菌剂。每年,数千吨抗菌剂及其副产品被释放到环境中,尤其是水生环境中。这种类型的异生物质在自然环境中具有生态影响,但在废水处理厂和甲烷发酵污水污泥处理厂等技术环境中也具有生态影响。微生物群落不仅持续暴露于高浓度抗生素,而且持续暴露于亚抑制浓度的抗生素,这是水生环境和土壤中抗生素耐药性发展的关键因素。抗菌药物的未来在于开发生物源或生物启发分子。观察和解读生物体之间的相互作用是这一发展的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial agents and microbial ecology
Antimicrobials are therapeutic substances used to prevent or treat infections. Disinfectants are antimicrobial agents applied to non-living surfaces. Every year, several thousand tonnes of antimicrobials and their by-products are released into the environment and in particular into the aquatic environment. This type of xenobiotic has ecological consequences in the natural environment but also in technological environments such as wastewater treatment plants and methane fermentation sewage sludge treatment plants. The constant exposure of microbial communities not only to high concentrations but also to sub-inhibitory concentrations of antibiotics is a key element in the development of antibiotic resistance in aquatic environments and in soils. The future of antimicrobials lies in the development of biosourced or bioinspired molecules. The observation and deciphering of interactions between living organisms is the key to this development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信