Rn$\mathbb {R}^n$中的行并集

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-02-17 DOI:10.1112/mtk.12190
Joshua Zahl
{"title":"Rn$\\mathbb {R}^n$中的行并集","authors":"Joshua Zahl","doi":"10.1112/mtk.12190","DOIUrl":null,"url":null,"abstract":"<p>We prove a conjecture of D. Oberlin on the dimension of unions of lines in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math>. If <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d\\geqslant 1$</annotation>\n </semantics></math> is an integer, <math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>⩽</mo>\n <mi>β</mi>\n <mo>⩽</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0\\leqslant \\beta \\leqslant 1$</annotation>\n </semantics></math>, and <i>L</i> is a set of lines in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> with Hausdorff dimension at least <math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>(</mo>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>+</mo>\n <mi>β</mi>\n </mrow>\n <annotation>$2(d-1)+\\beta$</annotation>\n </semantics></math>, then the union of the lines in <i>L</i> has Hausdorff dimension at least <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mi>β</mi>\n </mrow>\n <annotation>$d + \\beta$</annotation>\n </semantics></math>. Our proof combines a refined version of the multilinear Kakeya theorem by Carbery and Valdimarsson with the multilinear → linear argument of Bourgain and Guth.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12190","citationCount":"0","resultStr":"{\"title\":\"Unions of lines in \\n \\n \\n R\\n n\\n \\n $\\\\mathbb {R}^n$\",\"authors\":\"Joshua Zahl\",\"doi\":\"10.1112/mtk.12190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a conjecture of D. Oberlin on the dimension of unions of lines in <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math>. If <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 1$</annotation>\\n </semantics></math> is an integer, <math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>⩽</mo>\\n <mi>β</mi>\\n <mo>⩽</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0\\\\leqslant \\\\beta \\\\leqslant 1$</annotation>\\n </semantics></math>, and <i>L</i> is a set of lines in <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> with Hausdorff dimension at least <math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>+</mo>\\n <mi>β</mi>\\n </mrow>\\n <annotation>$2(d-1)+\\\\beta$</annotation>\\n </semantics></math>, then the union of the lines in <i>L</i> has Hausdorff dimension at least <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mi>β</mi>\\n </mrow>\\n <annotation>$d + \\\\beta$</annotation>\\n </semantics></math>. Our proof combines a refined version of the multilinear Kakeya theorem by Carbery and Valdimarsson with the multilinear → linear argument of Bourgain and Guth.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12190\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12190\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12190","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了D.Oberlin关于Rn$\mathbb{R}^n$中直线并集维数的一个猜想。如果d⩾1$d\geqslant 1$是一个整数,0⩽β\108777 1$0\leqslant\beta\leqslant 1$,并且L是Rn$\mathbb{R}^n$中的一组线,其中Hausdorff维数至少为2(d−1)+β$2(d-1)+\beta$,则L中的线的并集具有至少d+β$d+\beta$Hausdorf维数。我们的证明结合了Carbery和Valdimarsson对多重线性Kakeya定理的改进版本和多重线性→ Bourgain和Guth的线性论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unions of lines in R n $\mathbb {R}^n$

We prove a conjecture of D. Oberlin on the dimension of unions of lines in R n $\mathbb {R}^n$ . If d 1 $d\geqslant 1$ is an integer, 0 β 1 $0\leqslant \beta \leqslant 1$ , and L is a set of lines in R n $\mathbb {R}^n$ with Hausdorff dimension at least 2 ( d 1 ) + β $2(d-1)+\beta$ , then the union of the lines in L has Hausdorff dimension at least d + β $d + \beta$ . Our proof combines a refined version of the multilinear Kakeya theorem by Carbery and Valdimarsson with the multilinear → linear argument of Bourgain and Guth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信