FCC Ti和Zr亚稳相晶格导热系数的温度依赖性

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
E. B. Dolgusheva
{"title":"FCC Ti和Zr亚稳相晶格导热系数的温度依赖性","authors":"E. B. Dolgusheva","doi":"10.1134/S1063783422100018","DOIUrl":null,"url":null,"abstract":"<p>The metastable phases of a material have other, possibly anomalous properties as compared to its stable structural state. The elastic and dynamic properties of metastable phases with a face-centered cubic (FCC) lattice of highly anharmonic transition metals, Ti and Zr, calculated previously by the molecular dynamics method with many-body potentials, constructed using the embedded-atom method, are in good agreement with previous theoretical calculations. The possibility of using the non-equilibrium molecular dynamics method to calculate the lattice thermal conductivity of metastable FCC structures in both metals is demonstrated. Temperature dependences of the lattice thermal conductivity coefficients of FCC Ti and Zr are obtained for crystallites with a cross section of 12 × 12 FCC unit cells (u.c.) and lengths of 48 and 96 u.c. The results are compared with the previously calculated lattice thermal conductivity of Al, which is consistent with ab initio calculations.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Dependence of the Lattice Thermal Conductivity of Metastable Phases of FCC Ti and Zr\",\"authors\":\"E. B. Dolgusheva\",\"doi\":\"10.1134/S1063783422100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The metastable phases of a material have other, possibly anomalous properties as compared to its stable structural state. The elastic and dynamic properties of metastable phases with a face-centered cubic (FCC) lattice of highly anharmonic transition metals, Ti and Zr, calculated previously by the molecular dynamics method with many-body potentials, constructed using the embedded-atom method, are in good agreement with previous theoretical calculations. The possibility of using the non-equilibrium molecular dynamics method to calculate the lattice thermal conductivity of metastable FCC structures in both metals is demonstrated. Temperature dependences of the lattice thermal conductivity coefficients of FCC Ti and Zr are obtained for crystallites with a cross section of 12 × 12 FCC unit cells (u.c.) and lengths of 48 and 96 u.c. The results are compared with the previously calculated lattice thermal conductivity of Al, which is consistent with ab initio calculations.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783422100018\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783422100018","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

与稳定的结构状态相比,材料的亚稳相具有其他可能异常的特性。用嵌入原子法构造的多体势分子动力学方法计算了高度非调和过渡金属Ti和Zr具有面心立方晶格的亚稳相的弹性和动力学性质,与先前的理论计算结果吻合得很好。证明了用非平衡分子动力学方法计算两种金属介稳FCC结构晶格热导率的可能性。对截面为12 × 12 FCC晶胞(u.c)、长度为48和96 u.c的FCC晶胞,得到了FCC Ti和Zr晶格导热系数的温度依赖关系,并与之前计算的Al晶格导热系数进行了比较,结果与从头算一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temperature Dependence of the Lattice Thermal Conductivity of Metastable Phases of FCC Ti and Zr

Temperature Dependence of the Lattice Thermal Conductivity of Metastable Phases of FCC Ti and Zr

The metastable phases of a material have other, possibly anomalous properties as compared to its stable structural state. The elastic and dynamic properties of metastable phases with a face-centered cubic (FCC) lattice of highly anharmonic transition metals, Ti and Zr, calculated previously by the molecular dynamics method with many-body potentials, constructed using the embedded-atom method, are in good agreement with previous theoretical calculations. The possibility of using the non-equilibrium molecular dynamics method to calculate the lattice thermal conductivity of metastable FCC structures in both metals is demonstrated. Temperature dependences of the lattice thermal conductivity coefficients of FCC Ti and Zr are obtained for crystallites with a cross section of 12 × 12 FCC unit cells (u.c.) and lengths of 48 and 96 u.c. The results are compared with the previously calculated lattice thermal conductivity of Al, which is consistent with ab initio calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信