基于微裂纹填充的树脂基摩擦材料的摩擦学和力学性能

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Lekai Li, Guixiong Gao, Jin Tong, Jian Zhuang, Wei Song, Yunhai Ma, Guoqin Liu, Feipeng Cao, Shengwang Yuan, Qifeng Zhang
{"title":"基于微裂纹填充的树脂基摩擦材料的摩擦学和力学性能","authors":"Lekai Li,&nbsp;Guixiong Gao,&nbsp;Jin Tong,&nbsp;Jian Zhuang,&nbsp;Wei Song,&nbsp;Yunhai Ma,&nbsp;Guoqin Liu,&nbsp;Feipeng Cao,&nbsp;Shengwang Yuan,&nbsp;Qifeng Zhang","doi":"10.1049/bsb2.12055","DOIUrl":null,"url":null,"abstract":"<p>To enhance the friction performance of resin-based friction materials, five types of specimens with different polymer ether ketone (PEEK) contents were fabricated and their physiomechanical behaviours were tested and, their tribological properties were investigated using a JF150F-II constant-speed tester. It was found that the addition of PEEK had a positive influence on the properties of the friction materials, and sample FM-3 (the shorthand of ‘Friction Materials-3’, containing 2 wt% PEEK) exhibited improved friction performance with a fade ratio and recovery ratio of 8.6% and 101.1% respectively. Among all samples, FM-4 (the shorthand of ‘Friction Materials-4’, containing 3 wt% PEEK) had the lowest specific wear rate with a value of 0.622 × 10<sup>−7</sup> cm<sup>3</sup> (N·m)<sup>−1</sup> at 350°C. The PEEK can fill the microcracks in the composite at a high temperature and can also cover the hard abrasive particles to prevent them from directly damaging the composite. The findings from this study afford a foundation for studies to further improve the properties of resin-based friction materials.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"9 1","pages":"1-8"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12055","citationCount":"2","resultStr":"{\"title\":\"Tribological and mechanical behaviours of resin-based friction materials based on microcrack filling\",\"authors\":\"Lekai Li,&nbsp;Guixiong Gao,&nbsp;Jin Tong,&nbsp;Jian Zhuang,&nbsp;Wei Song,&nbsp;Yunhai Ma,&nbsp;Guoqin Liu,&nbsp;Feipeng Cao,&nbsp;Shengwang Yuan,&nbsp;Qifeng Zhang\",\"doi\":\"10.1049/bsb2.12055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To enhance the friction performance of resin-based friction materials, five types of specimens with different polymer ether ketone (PEEK) contents were fabricated and their physiomechanical behaviours were tested and, their tribological properties were investigated using a JF150F-II constant-speed tester. It was found that the addition of PEEK had a positive influence on the properties of the friction materials, and sample FM-3 (the shorthand of ‘Friction Materials-3’, containing 2 wt% PEEK) exhibited improved friction performance with a fade ratio and recovery ratio of 8.6% and 101.1% respectively. Among all samples, FM-4 (the shorthand of ‘Friction Materials-4’, containing 3 wt% PEEK) had the lowest specific wear rate with a value of 0.622 × 10<sup>−7</sup> cm<sup>3</sup> (N·m)<sup>−1</sup> at 350°C. The PEEK can fill the microcracks in the composite at a high temperature and can also cover the hard abrasive particles to prevent them from directly damaging the composite. The findings from this study afford a foundation for studies to further improve the properties of resin-based friction materials.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"9 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12055\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

为提高树脂基摩擦材料的摩擦性能,采用JF150F-II等速试验机对5种不同PEEK含量的树脂基摩擦材料进行了物理力学性能测试和摩擦学性能研究。研究发现,PEEK的加入对摩擦材料的性能有积极的影响,样品FM-3(“摩擦材料-3”的简写,含有2 wt% PEEK)的摩擦性能得到改善,其褪色率和恢复率分别为8.6%和101.1%。在所有样品中,FM-4(“摩擦材料-4”的简写,含有3 wt% PEEK)在350℃时具有最低的比磨损率,值为0.622 × 10−7 cm3 (N·m)−1。PEEK可以在高温下填充复合材料中的微裂纹,也可以覆盖坚硬的磨料颗粒,防止它们直接损坏复合材料。研究结果为进一步提高树脂基摩擦材料的性能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tribological and mechanical behaviours of resin-based friction materials based on microcrack filling

Tribological and mechanical behaviours of resin-based friction materials based on microcrack filling

To enhance the friction performance of resin-based friction materials, five types of specimens with different polymer ether ketone (PEEK) contents were fabricated and their physiomechanical behaviours were tested and, their tribological properties were investigated using a JF150F-II constant-speed tester. It was found that the addition of PEEK had a positive influence on the properties of the friction materials, and sample FM-3 (the shorthand of ‘Friction Materials-3’, containing 2 wt% PEEK) exhibited improved friction performance with a fade ratio and recovery ratio of 8.6% and 101.1% respectively. Among all samples, FM-4 (the shorthand of ‘Friction Materials-4’, containing 3 wt% PEEK) had the lowest specific wear rate with a value of 0.622 × 10−7 cm3 (N·m)−1 at 350°C. The PEEK can fill the microcracks in the composite at a high temperature and can also cover the hard abrasive particles to prevent them from directly damaging the composite. The findings from this study afford a foundation for studies to further improve the properties of resin-based friction materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信