具有严格凸边界的紧致3流形毛细管表面的刚性

IF 0.7 3区 数学 Q2 MATHEMATICS
P. Sousa, R. Batista, B. P. Lima, Bruno Vasconcelos Mendes Vieira
{"title":"具有严格凸边界的紧致3流形毛细管表面的刚性","authors":"P. Sousa, R. Batista, B. P. Lima, Bruno Vasconcelos Mendes Vieira","doi":"10.1017/S0013091523000135","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we obtain one sharp estimate for the length $L(\\partial\\Sigma)$ of the boundary $\\partial\\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\\partial\\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"66 1","pages":"231 - 240"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of capillary surfaces in compact 3-manifolds with strictly convex boundary\",\"authors\":\"P. Sousa, R. Batista, B. P. Lima, Bruno Vasconcelos Mendes Vieira\",\"doi\":\"10.1017/S0013091523000135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we obtain one sharp estimate for the length $L(\\\\partial\\\\Sigma)$ of the boundary $\\\\partial\\\\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\\\\partial\\\\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\\\\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"66 1\",\"pages\":\"231 - 240\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000135\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了M3中毛细极小曲面Σ2的边界$\partial\Sigma$长度$L(\partial\Sigma)$的一个尖锐估计,其中M是具有严格凸边界的紧致三流形,假设Σ的指标为1。估计是根据Σ的属、$\partial\Sigma$的连接分量的数目和恒定的接触角θ。对M沿$\partial M$的几何形状做一个额外的假设,我们描述了M的全局几何形状,它只被欧几里得三球饱和。对于毛细管稳定的CMC表面,我们也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of capillary surfaces in compact 3-manifolds with strictly convex boundary
Abstract In this paper, we obtain one sharp estimate for the length $L(\partial\Sigma)$ of the boundary $\partial\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\partial\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信