具有多时滞的分数阶Cohen-Grossberg神经网络的分支检测

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-06-01 Epub Date: 2023-02-28 DOI:10.1007/s11571-023-09934-2
Chengdai Huang, Shansong Mo, Jinde Cao
{"title":"具有多时滞的分数阶Cohen-Grossberg神经网络的分支检测","authors":"Chengdai Huang, Shansong Mo, Jinde Cao","doi":"10.1007/s11571-023-09934-2","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamics of integer-order Cohen-Grossberg neural networks with time delays has lately drawn tremendous attention. It reveals that fractional calculus plays a crucial role on influencing the dynamical behaviors of neural networks (NNs). This paper deals with the problem of the stability and bifurcation of fractional-order Cohen-Grossberg neural networks (FOCGNNs) with two different leakage delay and communication delay. The bifurcation results with regard to leakage delay are firstly gained. Then, communication delay is viewed as a bifurcation parameter to detect the critical values of bifurcations for the addressed FOCGNN, and the communication delay induced-bifurcation conditions are procured. We further discover that fractional orders can enlarge (reduce) stability regions of the addressed FOCGNN. Furthermore, we discover that, for the same system parameters, the convergence time to the equilibrium point of FONN is shorter (longer) than that of integer-order NNs. In this paper, the present methodology to handle the characteristic equation with triple transcendental terms in delayed FOCGNNs is concise, neoteric and flexible in contrast with the prior mechanisms owing to skillfully keeping away from the intricate classified discussions. Eventually, the developed analytic results are nicely showcased by the simulation examples.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"1379-1396"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detections of bifurcation in a fractional-order Cohen-Grossberg neural network with multiple delays.\",\"authors\":\"Chengdai Huang, Shansong Mo, Jinde Cao\",\"doi\":\"10.1007/s11571-023-09934-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamics of integer-order Cohen-Grossberg neural networks with time delays has lately drawn tremendous attention. It reveals that fractional calculus plays a crucial role on influencing the dynamical behaviors of neural networks (NNs). This paper deals with the problem of the stability and bifurcation of fractional-order Cohen-Grossberg neural networks (FOCGNNs) with two different leakage delay and communication delay. The bifurcation results with regard to leakage delay are firstly gained. Then, communication delay is viewed as a bifurcation parameter to detect the critical values of bifurcations for the addressed FOCGNN, and the communication delay induced-bifurcation conditions are procured. We further discover that fractional orders can enlarge (reduce) stability regions of the addressed FOCGNN. Furthermore, we discover that, for the same system parameters, the convergence time to the equilibrium point of FONN is shorter (longer) than that of integer-order NNs. In this paper, the present methodology to handle the characteristic equation with triple transcendental terms in delayed FOCGNNs is concise, neoteric and flexible in contrast with the prior mechanisms owing to skillfully keeping away from the intricate classified discussions. Eventually, the developed analytic results are nicely showcased by the simulation examples.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\" \",\"pages\":\"1379-1396\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09934-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09934-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

带有时间延迟的整数阶 Cohen-Grossberg 神经网络的动力学近来引起了广泛关注。它揭示了分数微积分对神经网络(NN)动力学行为的重要影响。本文讨论了具有两种不同泄漏延迟和通信延迟的分数阶科恩-格罗斯伯格神经网络(FOCGNN)的稳定性和分岔问题。首先获得了泄漏延迟的分岔结果。然后,将通信延迟视为分岔参数,以检测所处理的 FOCGNN 的分岔临界值,并获得通信延迟诱导的分岔条件。我们进一步发现,分数阶可以扩大(缩小)所求解 FOCGNN 的稳定区域。此外,我们还发现,在系统参数相同的情况下,FONN 到平衡点的收敛时间比整数阶 NN 短(长)。在本文中,由于巧妙地避开了错综复杂的分类讨论,处理延迟 FOCGNN 中带有三重超越项的特征方程的方法与之前的机制相比简洁、新颖和灵活。最后,模拟实例很好地展示了所得出的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detections of bifurcation in a fractional-order Cohen-Grossberg neural network with multiple delays.

The dynamics of integer-order Cohen-Grossberg neural networks with time delays has lately drawn tremendous attention. It reveals that fractional calculus plays a crucial role on influencing the dynamical behaviors of neural networks (NNs). This paper deals with the problem of the stability and bifurcation of fractional-order Cohen-Grossberg neural networks (FOCGNNs) with two different leakage delay and communication delay. The bifurcation results with regard to leakage delay are firstly gained. Then, communication delay is viewed as a bifurcation parameter to detect the critical values of bifurcations for the addressed FOCGNN, and the communication delay induced-bifurcation conditions are procured. We further discover that fractional orders can enlarge (reduce) stability regions of the addressed FOCGNN. Furthermore, we discover that, for the same system parameters, the convergence time to the equilibrium point of FONN is shorter (longer) than that of integer-order NNs. In this paper, the present methodology to handle the characteristic equation with triple transcendental terms in delayed FOCGNNs is concise, neoteric and flexible in contrast with the prior mechanisms owing to skillfully keeping away from the intricate classified discussions. Eventually, the developed analytic results are nicely showcased by the simulation examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信