Fabián Medina-Cuy, Dunkan Martínez, Francisco Domínguez-Adame, P. A. Orellana
{"title":"驱动量子点中的马约拉纳束缚态","authors":"Fabián Medina-Cuy, Dunkan Martínez, Francisco Domínguez-Adame, P. A. Orellana","doi":"10.1140/epjp/s13360-023-04326-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study a periodically driven quantum dot in two different configurations. In the first setup, a quantum dot coupled to a topological superconductor and a normal metal lead. In the second setup, a T-shape quantum dot connected to two topological superconductors and side coupled to a normal metal lead. By a combination of non-equilibrium Green’s function techniques and Floquet’s formalism, we obtain the quasienergy spectra as a function of the amplitude, frequency, and superconducting phase difference. We show that the states develop unique electronic responses, such as the broken particle-hole symmetry that appears when considering the non-locality of Majorana bound states. Finally, we compute the time-average current and the differential conductance to reveal these spectra signatures through physically measurable magnitudes in the two proposed configurations.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"138 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04326-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Majorana bound states in a driven quantum dot\",\"authors\":\"Fabián Medina-Cuy, Dunkan Martínez, Francisco Domínguez-Adame, P. A. Orellana\",\"doi\":\"10.1140/epjp/s13360-023-04326-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a periodically driven quantum dot in two different configurations. In the first setup, a quantum dot coupled to a topological superconductor and a normal metal lead. In the second setup, a T-shape quantum dot connected to two topological superconductors and side coupled to a normal metal lead. By a combination of non-equilibrium Green’s function techniques and Floquet’s formalism, we obtain the quasienergy spectra as a function of the amplitude, frequency, and superconducting phase difference. We show that the states develop unique electronic responses, such as the broken particle-hole symmetry that appears when considering the non-locality of Majorana bound states. Finally, we compute the time-average current and the differential conductance to reveal these spectra signatures through physically measurable magnitudes in the two proposed configurations.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"138 8\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04326-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-023-04326-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-023-04326-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We study a periodically driven quantum dot in two different configurations. In the first setup, a quantum dot coupled to a topological superconductor and a normal metal lead. In the second setup, a T-shape quantum dot connected to two topological superconductors and side coupled to a normal metal lead. By a combination of non-equilibrium Green’s function techniques and Floquet’s formalism, we obtain the quasienergy spectra as a function of the amplitude, frequency, and superconducting phase difference. We show that the states develop unique electronic responses, such as the broken particle-hole symmetry that appears when considering the non-locality of Majorana bound states. Finally, we compute the time-average current and the differential conductance to reveal these spectra signatures through physically measurable magnitudes in the two proposed configurations.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.