屈曲约束下梁形优化的伪谱方法

IF 1.5 Q3 MECHANICS
H. M. Abdalla
{"title":"屈曲约束下梁形优化的伪谱方法","authors":"H. M. Abdalla","doi":"10.13052/ejcm2642-2085.3132","DOIUrl":null,"url":null,"abstract":"In this article, a direct transcription approach to the minimization of the volume of elastic straight beams undergoing plane deformation and subject to buckling loads is presented. In particular, the so-called pseudospectral method is employed, where state variables are approximated by Lagrange interpolating polynomials and static equations are collocated at Legendre-Gauss-Radau nonuniform mesh points. The resulting shape optimization problems are thus transcribed into constrained nonlinear programming problems, which in turn are solved by developed routines. Historical benchmark and academic problems such as simply supported beams subject to a concentrated compressing force, compressed and rotating cantilever beams and simply supported beams under a non-conservative follower distributed load are revisited and numerically solved under the conditions of plane deformation theory. Numerical solutions are discussed and compared to those obtained by the shooting method, which is largely employed for these problems, emphasizing how the proposed method could forecast optimal cross sectional area distributions within a unified fashion and without resorting to accurate guesses beforehand.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pseudospectral Approach to the Shape Optimization of Beams Under Buckling Constraints\",\"authors\":\"H. M. Abdalla\",\"doi\":\"10.13052/ejcm2642-2085.3132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a direct transcription approach to the minimization of the volume of elastic straight beams undergoing plane deformation and subject to buckling loads is presented. In particular, the so-called pseudospectral method is employed, where state variables are approximated by Lagrange interpolating polynomials and static equations are collocated at Legendre-Gauss-Radau nonuniform mesh points. The resulting shape optimization problems are thus transcribed into constrained nonlinear programming problems, which in turn are solved by developed routines. Historical benchmark and academic problems such as simply supported beams subject to a concentrated compressing force, compressed and rotating cantilever beams and simply supported beams under a non-conservative follower distributed load are revisited and numerically solved under the conditions of plane deformation theory. Numerical solutions are discussed and compared to those obtained by the shooting method, which is largely employed for these problems, emphasizing how the proposed method could forecast optimal cross sectional area distributions within a unified fashion and without resorting to accurate guesses beforehand.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.3132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种直接求解平面变形和屈曲载荷作用下弹性直梁体积最小化的方法。特别地,采用了所谓的伪谱方法,其中状态变量通过拉格朗日插值多项式近似,静态方程在勒让德-高斯-拉道非均匀网格点处并置。由此产生的形状优化问题被转化为约束非线性规划问题,这些问题又通过开发的例程来解决。在平面变形理论的条件下,对集中压缩力下的简支梁、压缩旋转悬臂梁和非保守从动件分布荷载下的简支梁等历史基准和学术问题进行了重新审视和数值求解。讨论了数值解,并将其与主要用于这些问题的射击方法获得的数值解进行了比较,强调了所提出的方法如何在不事先进行精确猜测的情况下,以统一的方式预测最佳横截面积分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudospectral Approach to the Shape Optimization of Beams Under Buckling Constraints
In this article, a direct transcription approach to the minimization of the volume of elastic straight beams undergoing plane deformation and subject to buckling loads is presented. In particular, the so-called pseudospectral method is employed, where state variables are approximated by Lagrange interpolating polynomials and static equations are collocated at Legendre-Gauss-Radau nonuniform mesh points. The resulting shape optimization problems are thus transcribed into constrained nonlinear programming problems, which in turn are solved by developed routines. Historical benchmark and academic problems such as simply supported beams subject to a concentrated compressing force, compressed and rotating cantilever beams and simply supported beams under a non-conservative follower distributed load are revisited and numerically solved under the conditions of plane deformation theory. Numerical solutions are discussed and compared to those obtained by the shooting method, which is largely employed for these problems, emphasizing how the proposed method could forecast optimal cross sectional area distributions within a unified fashion and without resorting to accurate guesses beforehand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信