van der Corput差分定理的推广及其在递推和多重遍历平均中的应用

Pub Date : 2023-03-21 DOI:10.1080/14689367.2023.2230160
S. Farhangi
{"title":"van der Corput差分定理的推广及其在递推和多重遍历平均中的应用","authors":"S. Farhangi","doi":"10.1080/14689367.2023.2230160","DOIUrl":null,"url":null,"abstract":"We prove a generalization of van der Corput's difference theorem for sequences of vectors in a Hilbert space. This generalization is obtained by establishing a connection between sequences of vectors in the first Hilbert space with a vector in a new Hilbert space whose spectral type with respect to a certain unitary operator is absolutely continuous with respect to the Lebesgue measure. We use this generalization to obtain applications regarding recurrence and multiple ergodic averages when we have measure preserving automorphisms T and S that do not necessarily commute, but T has a maximal spectral type that is mutually singular with the Lebesgue measure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A generalization of van der Corput's difference theorem with applications to recurrence and multiple ergodic averages\",\"authors\":\"S. Farhangi\",\"doi\":\"10.1080/14689367.2023.2230160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a generalization of van der Corput's difference theorem for sequences of vectors in a Hilbert space. This generalization is obtained by establishing a connection between sequences of vectors in the first Hilbert space with a vector in a new Hilbert space whose spectral type with respect to a certain unitary operator is absolutely continuous with respect to the Lebesgue measure. We use this generalization to obtain applications regarding recurrence and multiple ergodic averages when we have measure preserving automorphisms T and S that do not necessarily commute, but T has a maximal spectral type that is mutually singular with the Lebesgue measure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2230160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2230160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了Hilbert空间中向量序列的van der Corput差分定理的一个推广。这种推广是通过在第一希尔伯特空间中的向量序列与新希尔伯特空间的向量之间建立连接来获得的,该新希尔伯特空的谱类型相对于某个酉算子相对于勒贝格测度是绝对连续的。当我们有保测度的自同构T和S时,我们使用这种推广来获得关于递推和多重遍历平均的应用,它们不一定是可交换的,但T具有与Lebesgue测度互奇异的最大谱类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A generalization of van der Corput's difference theorem with applications to recurrence and multiple ergodic averages
We prove a generalization of van der Corput's difference theorem for sequences of vectors in a Hilbert space. This generalization is obtained by establishing a connection between sequences of vectors in the first Hilbert space with a vector in a new Hilbert space whose spectral type with respect to a certain unitary operator is absolutely continuous with respect to the Lebesgue measure. We use this generalization to obtain applications regarding recurrence and multiple ergodic averages when we have measure preserving automorphisms T and S that do not necessarily commute, but T has a maximal spectral type that is mutually singular with the Lebesgue measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信