Rizky Dwi Satrio , Miftahul Huda Fendiyanto , Ence Darmo Jaya Supena , S. Suharsono , M. Miftahudin
{"title":"干旱胁迫下水稻农业生理性状QTL定位与鉴定","authors":"Rizky Dwi Satrio , Miftahul Huda Fendiyanto , Ence Darmo Jaya Supena , S. Suharsono , M. Miftahudin","doi":"10.1016/j.plgene.2022.100397","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring novel QTLs for drought tolerance traits using a new rice genetic resource would be valuable to dissect the mechanisms underlying the complexity of the trait. Here, we used a recombinant inbred line population to detect the QTL associated with agro-physiological traits under drought stress, in particular incorporating the SNPs and 147 phenotype data, analyzed the transcript expression of genes within QTL using differential gene expression meta-analysis and qRT-PCR technique. Composite interval mapping analysis allowed the detection of 154 QTLs distributed into 66 regions, which included a large QTL cluster called ‘hotspot QTL’ that strongly associated with drought tolerance on rice chromosome 8. We found several genes within the QTL-containing regions that were highly expressed based on the meta-analysis approach. In the future, the QTL reported here may be utilized for marker-assisted breeding and the candidate drought-responsive genes could be characterized for dissecting a comprehensive molecular mechanism of drought tolerance in rice.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100397"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping and identification of QTL for agro-physiological traits in rice (Oryza sativa L.) under drought stress\",\"authors\":\"Rizky Dwi Satrio , Miftahul Huda Fendiyanto , Ence Darmo Jaya Supena , S. Suharsono , M. Miftahudin\",\"doi\":\"10.1016/j.plgene.2022.100397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploring novel QTLs for drought tolerance traits using a new rice genetic resource would be valuable to dissect the mechanisms underlying the complexity of the trait. Here, we used a recombinant inbred line population to detect the QTL associated with agro-physiological traits under drought stress, in particular incorporating the SNPs and 147 phenotype data, analyzed the transcript expression of genes within QTL using differential gene expression meta-analysis and qRT-PCR technique. Composite interval mapping analysis allowed the detection of 154 QTLs distributed into 66 regions, which included a large QTL cluster called ‘hotspot QTL’ that strongly associated with drought tolerance on rice chromosome 8. We found several genes within the QTL-containing regions that were highly expressed based on the meta-analysis approach. In the future, the QTL reported here may be utilized for marker-assisted breeding and the candidate drought-responsive genes could be characterized for dissecting a comprehensive molecular mechanism of drought tolerance in rice.</p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"33 \",\"pages\":\"Article 100397\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407322000476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407322000476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Mapping and identification of QTL for agro-physiological traits in rice (Oryza sativa L.) under drought stress
Exploring novel QTLs for drought tolerance traits using a new rice genetic resource would be valuable to dissect the mechanisms underlying the complexity of the trait. Here, we used a recombinant inbred line population to detect the QTL associated with agro-physiological traits under drought stress, in particular incorporating the SNPs and 147 phenotype data, analyzed the transcript expression of genes within QTL using differential gene expression meta-analysis and qRT-PCR technique. Composite interval mapping analysis allowed the detection of 154 QTLs distributed into 66 regions, which included a large QTL cluster called ‘hotspot QTL’ that strongly associated with drought tolerance on rice chromosome 8. We found several genes within the QTL-containing regions that were highly expressed based on the meta-analysis approach. In the future, the QTL reported here may be utilized for marker-assisted breeding and the candidate drought-responsive genes could be characterized for dissecting a comprehensive molecular mechanism of drought tolerance in rice.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.