表面永磁同步电动机各种转子拓扑结构的性能分析

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
V. Šarac
{"title":"表面永磁同步电动机各种转子拓扑结构的性能分析","authors":"V. Šarac","doi":"10.2478/jee-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract Surface mounted permanent magnet synchronous motors can be found in several designs regarding configuration of magnets on the rotor. Finding the most optimal design in terms of the high efficiency and power factor, small cogging torque and material consumption along with good overloading capability could be a challenging task. This paper analyzes three different rotor designs of surface permanent magnet motors regarding their magnet shapes. All three motors have the same outer dimensions, output power, torque and the material properties. The comparison of all three models is performed and advantages and drawbacks of each model are pointed out. Four design variables are selected to be varied within prescribed limits for each motor model in order the best combination of number of conductors per slot, magnet thickness, the magnet length and shape to be fond, which result with the highest efficiency, small cogging torque and good overloading capability of the motor. The impact of each varied parameter on motor efficiency and cogging torque is presented. All three optimized model are compared and the most optimal model in terms of the above-mentioned characteristics is analyzed by finite element method (FEM) and with the Simulink. The model in Simulink allows motor transient characteristics to be obtained. The performed analysis is useful for determining the most optimal and cost-effective solution among presented three types of surface mounted permanent magnet motors in terms of the high efficiency and power factor, small cogging torque and material consumption.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"74 1","pages":"85 - 94"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of various rotor topologies of surface PM synchronous motor\",\"authors\":\"V. Šarac\",\"doi\":\"10.2478/jee-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surface mounted permanent magnet synchronous motors can be found in several designs regarding configuration of magnets on the rotor. Finding the most optimal design in terms of the high efficiency and power factor, small cogging torque and material consumption along with good overloading capability could be a challenging task. This paper analyzes three different rotor designs of surface permanent magnet motors regarding their magnet shapes. All three motors have the same outer dimensions, output power, torque and the material properties. The comparison of all three models is performed and advantages and drawbacks of each model are pointed out. Four design variables are selected to be varied within prescribed limits for each motor model in order the best combination of number of conductors per slot, magnet thickness, the magnet length and shape to be fond, which result with the highest efficiency, small cogging torque and good overloading capability of the motor. The impact of each varied parameter on motor efficiency and cogging torque is presented. All three optimized model are compared and the most optimal model in terms of the above-mentioned characteristics is analyzed by finite element method (FEM) and with the Simulink. The model in Simulink allows motor transient characteristics to be obtained. The performed analysis is useful for determining the most optimal and cost-effective solution among presented three types of surface mounted permanent magnet motors in terms of the high efficiency and power factor, small cogging torque and material consumption.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"74 1\",\"pages\":\"85 - 94\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2023-0011\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2023-0011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

表面安装式永磁同步电动机在转子上的磁体结构有多种设计。在高效率和功率因数、小齿槽扭矩和材料消耗以及良好的过载能力方面找到最优设计可能是一项具有挑战性的任务。分析了三种表面永磁电机转子的磁体形状。所有三种电机具有相同的外部尺寸,输出功率,扭矩和材料性能。对三种模型进行了比较,并指出了各自的优缺点。为使每一型号电机的槽数、磁体厚度、磁体长度和形状达到最佳组合,选择了四个设计变量,在规定的范围内进行变化,使电机的效率最高,齿槽转矩小,过载能力好。分析了各参数对电机效率和齿槽转矩的影响。对三种优化模型进行了比较,并采用有限元法(FEM)和Simulink对具有上述特性的最优模型进行了分析。利用Simulink中的模型可以得到电机的瞬态特性。所进行的分析有助于确定三种表面安装永磁电机在高效率和功率因数、小齿槽转矩和材料消耗方面的最优和最经济的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of various rotor topologies of surface PM synchronous motor
Abstract Surface mounted permanent magnet synchronous motors can be found in several designs regarding configuration of magnets on the rotor. Finding the most optimal design in terms of the high efficiency and power factor, small cogging torque and material consumption along with good overloading capability could be a challenging task. This paper analyzes three different rotor designs of surface permanent magnet motors regarding their magnet shapes. All three motors have the same outer dimensions, output power, torque and the material properties. The comparison of all three models is performed and advantages and drawbacks of each model are pointed out. Four design variables are selected to be varied within prescribed limits for each motor model in order the best combination of number of conductors per slot, magnet thickness, the magnet length and shape to be fond, which result with the highest efficiency, small cogging torque and good overloading capability of the motor. The impact of each varied parameter on motor efficiency and cogging torque is presented. All three optimized model are compared and the most optimal model in terms of the above-mentioned characteristics is analyzed by finite element method (FEM) and with the Simulink. The model in Simulink allows motor transient characteristics to be obtained. The performed analysis is useful for determining the most optimal and cost-effective solution among presented three types of surface mounted permanent magnet motors in terms of the high efficiency and power factor, small cogging torque and material consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信