Iwahori-Hecke代数的同调稳定性

Pub Date : 2022-10-08 DOI:10.1112/topo.12262
Richard Hepworth
{"title":"Iwahori-Hecke代数的同调稳定性","authors":"Richard Hepworth","doi":"10.1112/topo.12262","DOIUrl":null,"url":null,"abstract":"<p>We show that the Iwahori–Hecke algebras <math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathcal {H}_n$</annotation>\n </semantics></math> of type <math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$A_{n-1}$</annotation>\n </semantics></math> satisfy homological stability, where homology is interpreted as an appropriate Tor group. Our result precisely recovers Nakaoka's homological stability result for the symmetric groups in the case that the defining parameter is equal to 1. We believe that this paper, and our joint work with Boyd on Temperley–Lieb algebras, are the first time that the techniques of homological stability have been applied to algebras that are not group algebras.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12262","citationCount":"13","resultStr":"{\"title\":\"Homological stability for Iwahori–Hecke algebras\",\"authors\":\"Richard Hepworth\",\"doi\":\"10.1112/topo.12262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the Iwahori–Hecke algebras <math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathcal {H}_n$</annotation>\\n </semantics></math> of type <math>\\n <semantics>\\n <msub>\\n <mi>A</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$A_{n-1}$</annotation>\\n </semantics></math> satisfy homological stability, where homology is interpreted as an appropriate Tor group. Our result precisely recovers Nakaoka's homological stability result for the symmetric groups in the case that the defining parameter is equal to 1. We believe that this paper, and our joint work with Boyd on Temperley–Lieb algebras, are the first time that the techniques of homological stability have been applied to algebras that are not group algebras.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12262\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

证明了类型为A n−1 A_{n-1}$的Iwahori-Hecke代数H n$ \mathcal {H}_n$满足同调稳定性,其中同源性被解释为一个适当的Tor群。我们的结果精确地恢复了在定义参数等于1的情况下对称群的Nakaoka的同调稳定性结果。我们相信这篇论文,以及我们与Boyd在Temperley-Lieb代数上的合作工作,是第一次将同调稳定性技术应用到非群代数上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homological stability for Iwahori–Hecke algebras

We show that the Iwahori–Hecke algebras H n $\mathcal {H}_n$ of type A n 1 $A_{n-1}$ satisfy homological stability, where homology is interpreted as an appropriate Tor group. Our result precisely recovers Nakaoka's homological stability result for the symmetric groups in the case that the defining parameter is equal to 1. We believe that this paper, and our joint work with Boyd on Temperley–Lieb algebras, are the first time that the techniques of homological stability have been applied to algebras that are not group algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信