新冠肺炎疫情下展区基础设施的安全有效消毒

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. Barton
{"title":"新冠肺炎疫情下展区基础设施的安全有效消毒","authors":"H. Barton","doi":"10.5038/1827-806x.49.2.2332","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has been responsible for over 650,000 deaths worldwide. Transmission of SARS-CoV-2 occurs primarily through airborne transmission or direct human contact, demonstrating the importance of social distancing measures and the use of face masks to prevent infection. Nonetheless, the persistence of coronavirus on surfaces means that disinfection is important to limit the possibility of contact transmission. In this paper, the potential for various surfaces in show caves to serve as sources for SARS-CoV-2 infection is examined. Given the isoelectric potential (pI) of SARS and SARS-like coronaviruses, it is likely that they are adsorbed via electrochemical interactions to (limestone) rock surfaces, where the high humidity, pH and presence of biocarbonate ions will quickly lead to inactivation. Nonetheless, show caves contain infrastructure made of other non-porous surfaces that are more permissive for maintaining coronavirus viability. The 423 antiviral products approved by the US Environmental Protection Agency (EPA) were curated into 23 antiviral chemistries, which were further classified based on their potential to be hazardous, impact cave features or ecosystems, and those compounds likely to have the minimum impact on caves. The results suggest that alcohols (70% ethanol), organic acids (citric and lactic acid) and dilute hypochlorite represent the best disinfectants for in-cave use on non-porous surfaces. These disinfectants are able to inactivate coronaviruses inecosystems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Safe and effective disinfection of show cave infrastructure in a time of COVID-19\",\"authors\":\"H. Barton\",\"doi\":\"10.5038/1827-806x.49.2.2332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has been responsible for over 650,000 deaths worldwide. Transmission of SARS-CoV-2 occurs primarily through airborne transmission or direct human contact, demonstrating the importance of social distancing measures and the use of face masks to prevent infection. Nonetheless, the persistence of coronavirus on surfaces means that disinfection is important to limit the possibility of contact transmission. In this paper, the potential for various surfaces in show caves to serve as sources for SARS-CoV-2 infection is examined. Given the isoelectric potential (pI) of SARS and SARS-like coronaviruses, it is likely that they are adsorbed via electrochemical interactions to (limestone) rock surfaces, where the high humidity, pH and presence of biocarbonate ions will quickly lead to inactivation. Nonetheless, show caves contain infrastructure made of other non-porous surfaces that are more permissive for maintaining coronavirus viability. The 423 antiviral products approved by the US Environmental Protection Agency (EPA) were curated into 23 antiviral chemistries, which were further classified based on their potential to be hazardous, impact cave features or ecosystems, and those compounds likely to have the minimum impact on caves. The results suggest that alcohols (70% ethanol), organic acids (citric and lactic acid) and dilute hypochlorite represent the best disinfectants for in-cave use on non-porous surfaces. These disinfectants are able to inactivate coronaviruses inecosystems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5038/1827-806x.49.2.2332\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5038/1827-806x.49.2.2332","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

由新型冠状病毒SARS-CoV-2引起的COVID-19大流行已导致全球65万多人死亡。SARS-CoV-2的传播主要是通过空气传播或直接人际接触,这表明了保持社交距离措施和使用口罩预防感染的重要性。尽管如此,冠状病毒在物体表面的持续存在意味着消毒对于限制接触传播的可能性非常重要。在本文中,研究了洞穴中各种表面作为SARS-CoV-2感染源的可能性。考虑到SARS和类SARS冠状病毒的等电势(pI),它们很可能通过电化学相互作用吸附到(石灰石)岩石表面,那里的高湿度、pH值和生物碳酸盐离子的存在将迅速导致失活。尽管如此,洞穴中包含由其他无孔表面构成的基础设施,这些表面更有利于维持冠状病毒的生存能力。美国环境保护署(EPA)批准的423种抗病毒产品被整理成23种抗病毒化学物质,并根据其潜在的危险性、对洞穴特征或生态系统的影响以及对洞穴影响最小的化合物进行进一步分类。结果表明,酒精(70%乙醇)、有机酸(柠檬酸和乳酸)和稀次氯酸盐是洞穴内非多孔表面消毒的最佳消毒剂。这些消毒剂能够灭活生态系统中的冠状病毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safe and effective disinfection of show cave infrastructure in a time of COVID-19
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has been responsible for over 650,000 deaths worldwide. Transmission of SARS-CoV-2 occurs primarily through airborne transmission or direct human contact, demonstrating the importance of social distancing measures and the use of face masks to prevent infection. Nonetheless, the persistence of coronavirus on surfaces means that disinfection is important to limit the possibility of contact transmission. In this paper, the potential for various surfaces in show caves to serve as sources for SARS-CoV-2 infection is examined. Given the isoelectric potential (pI) of SARS and SARS-like coronaviruses, it is likely that they are adsorbed via electrochemical interactions to (limestone) rock surfaces, where the high humidity, pH and presence of biocarbonate ions will quickly lead to inactivation. Nonetheless, show caves contain infrastructure made of other non-porous surfaces that are more permissive for maintaining coronavirus viability. The 423 antiviral products approved by the US Environmental Protection Agency (EPA) were curated into 23 antiviral chemistries, which were further classified based on their potential to be hazardous, impact cave features or ecosystems, and those compounds likely to have the minimum impact on caves. The results suggest that alcohols (70% ethanol), organic acids (citric and lactic acid) and dilute hypochlorite represent the best disinfectants for in-cave use on non-porous surfaces. These disinfectants are able to inactivate coronaviruses inecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信