具有保持不变域的二阶有限元格式的可压缩欧拉方程的高效并行三维计算

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
M. Maier, M. Kronbichler
{"title":"具有保持不变域的二阶有限元格式的可压缩欧拉方程的高效并行三维计算","authors":"M. Maier, M. Kronbichler","doi":"10.1145/3470637","DOIUrl":null,"url":null,"abstract":"We discuss the efficient implementation of a high-performance second-order collocation-type finite-element scheme for solving the compressible Euler equations of gas dynamics on unstructured meshes. The solver is based on the convex-limiting technique introduced by Guermond et al. (SIAM J. Sci. Comput. 40, A3211–A3239, 2018). As such, it is invariant-domain preserving; i.e., the solver maintains important physical invariants and is guaranteed to be stable without the use of ad hoc tuning parameters. This stability comes at the expense of a significantly more involved algorithmic structure that renders conventional high-performance discretizations challenging. We develop an algorithmic design that allows SIMD vectorization of the compute kernel, identify the main ingredients for a good node-level performance, and report excellent weak and strong scaling of a hybrid thread/MPI parallelization.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"8 1","pages":"1 - 30"},"PeriodicalIF":0.9000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Efficient Parallel 3D Computation of the Compressible Euler Equations with an Invariant-domain Preserving Second-order Finite-element Scheme\",\"authors\":\"M. Maier, M. Kronbichler\",\"doi\":\"10.1145/3470637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the efficient implementation of a high-performance second-order collocation-type finite-element scheme for solving the compressible Euler equations of gas dynamics on unstructured meshes. The solver is based on the convex-limiting technique introduced by Guermond et al. (SIAM J. Sci. Comput. 40, A3211–A3239, 2018). As such, it is invariant-domain preserving; i.e., the solver maintains important physical invariants and is guaranteed to be stable without the use of ad hoc tuning parameters. This stability comes at the expense of a significantly more involved algorithmic structure that renders conventional high-performance discretizations challenging. We develop an algorithmic design that allows SIMD vectorization of the compute kernel, identify the main ingredients for a good node-level performance, and report excellent weak and strong scaling of a hybrid thread/MPI parallelization.\",\"PeriodicalId\":42115,\"journal\":{\"name\":\"ACM Transactions on Parallel Computing\",\"volume\":\"8 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 15

摘要

讨论了求解非结构网格上气体动力学可压缩欧拉方程的高性能二阶配位型有限元格式的有效实现。该求解器基于Guermond et al. (SIAM J. Sci.)引入的凸极限技术。计算机学报。40,A3211-A3239, 2018)。因此,它是保持不变域的;即,求解器保持重要的物理不变量,并保证在不使用特别调优参数的情况下保持稳定。这种稳定性是以更复杂的算法结构为代价的,这使得传统的高性能离散化具有挑战性。我们开发了一种算法设计,允许计算内核的SIMD矢量化,确定了良好节点级性能的主要成分,并报告了混合线程/MPI并行化的优秀弱缩放和强缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Parallel 3D Computation of the Compressible Euler Equations with an Invariant-domain Preserving Second-order Finite-element Scheme
We discuss the efficient implementation of a high-performance second-order collocation-type finite-element scheme for solving the compressible Euler equations of gas dynamics on unstructured meshes. The solver is based on the convex-limiting technique introduced by Guermond et al. (SIAM J. Sci. Comput. 40, A3211–A3239, 2018). As such, it is invariant-domain preserving; i.e., the solver maintains important physical invariants and is guaranteed to be stable without the use of ad hoc tuning parameters. This stability comes at the expense of a significantly more involved algorithmic structure that renders conventional high-performance discretizations challenging. We develop an algorithmic design that allows SIMD vectorization of the compute kernel, identify the main ingredients for a good node-level performance, and report excellent weak and strong scaling of a hybrid thread/MPI parallelization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信