轨道贝塔过程的边界

T. Assiotis, J. Najnudel
{"title":"轨道贝塔过程的边界","authors":"T. Assiotis, J. Najnudel","doi":"10.17323/1609-4514-2021-21-4-659-694","DOIUrl":null,"url":null,"abstract":"The unitarily invariant probability measures on infinite Hermitian matrices have been classified by Pickrell, and by Olshanski and Vershik. This classification is equivalent to determining the boundary of a certain inhomogeneous Markov chain with given transition probabilities. This formulation of the problem makes sense for general $\\beta$-ensembles when one takes as the transition probabilities the Dixon-Anderson conditional probability distribution. In this paper we determine the boundary of this Markov chain for any $\\beta \\in (0,\\infty]$, also giving in this way a new proof of the classical $\\beta=2$ case. Finally, as a by-product of our results we obtain alternative proofs of the almost sure convergence of the rescaled Hua-Pickrell and Laguerre $\\beta$-ensembles to the general $\\beta$ Hua-Pickrell and $\\beta$ Bessel point processes respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"The Boundary of the Orbital Beta Process\",\"authors\":\"T. Assiotis, J. Najnudel\",\"doi\":\"10.17323/1609-4514-2021-21-4-659-694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unitarily invariant probability measures on infinite Hermitian matrices have been classified by Pickrell, and by Olshanski and Vershik. This classification is equivalent to determining the boundary of a certain inhomogeneous Markov chain with given transition probabilities. This formulation of the problem makes sense for general $\\\\beta$-ensembles when one takes as the transition probabilities the Dixon-Anderson conditional probability distribution. In this paper we determine the boundary of this Markov chain for any $\\\\beta \\\\in (0,\\\\infty]$, also giving in this way a new proof of the classical $\\\\beta=2$ case. Finally, as a by-product of our results we obtain alternative proofs of the almost sure convergence of the rescaled Hua-Pickrell and Laguerre $\\\\beta$-ensembles to the general $\\\\beta$ Hua-Pickrell and $\\\\beta$ Bessel point processes respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2021-21-4-659-694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-4-659-694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

Pickrell、Olshanski和Vershik对无穷厄米矩阵上的酉不变概率测度进行了分类。这种分类等价于确定具有给定转移概率的非齐次马尔可夫链的边界。当将狄克逊-安德森条件概率分布作为转移概率时,这种问题的表述对一般$\beta$ -系综是有意义的。本文确定了任意$\beta \in (0,\infty]$情况下马尔可夫链的边界,并由此给出了经典$\beta=2$情况的一个新的证明。最后,作为我们的结果的一个副产品,我们分别获得了重新标定的Hua-Pickrell和Laguerre $\beta$ -系综对一般的$\beta$ Hua-Pickrell和$\beta$ Bessel点过程几乎肯定收敛的替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Boundary of the Orbital Beta Process
The unitarily invariant probability measures on infinite Hermitian matrices have been classified by Pickrell, and by Olshanski and Vershik. This classification is equivalent to determining the boundary of a certain inhomogeneous Markov chain with given transition probabilities. This formulation of the problem makes sense for general $\beta$-ensembles when one takes as the transition probabilities the Dixon-Anderson conditional probability distribution. In this paper we determine the boundary of this Markov chain for any $\beta \in (0,\infty]$, also giving in this way a new proof of the classical $\beta=2$ case. Finally, as a by-product of our results we obtain alternative proofs of the almost sure convergence of the rescaled Hua-Pickrell and Laguerre $\beta$-ensembles to the general $\beta$ Hua-Pickrell and $\beta$ Bessel point processes respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信