{"title":"用于提高能源效率的高压SiC功率器件","authors":"T. Kimoto","doi":"10.2183/pjab.98.011","DOIUrl":null,"url":null,"abstract":"Silicon carbide (SiC) power devices significantly outperform the well-established silicon (Si) devices in terms of high breakdown voltage, low power loss, and fast switching. This review briefly introduces the major features of SiC power devices and then presents research works on breakdown phenomena in SiC pn junctions and related discussion which takes into account the energy band structure. Next, recent progress in SiC metal-oxide-semiconductor field effect transistors, which are the most important unipolar devices, is described with an emphasis on the improvement of channel mobility at the SiO2/SiC interface. The development of SiC bipolar devices such as pin diodes and insulated gate bipolar transistors, which are promising for ultrahigh-voltage (>10 kV) applications, are introduced and the effect of carrier lifetime enhancement is demonstrated. The current status of mass production and how SiC power devices can contribute to energy saving are also described.","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"98 1","pages":"161 - 189"},"PeriodicalIF":4.4000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"High-voltage SiC power devices for improved energy efficiency\",\"authors\":\"T. Kimoto\",\"doi\":\"10.2183/pjab.98.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon carbide (SiC) power devices significantly outperform the well-established silicon (Si) devices in terms of high breakdown voltage, low power loss, and fast switching. This review briefly introduces the major features of SiC power devices and then presents research works on breakdown phenomena in SiC pn junctions and related discussion which takes into account the energy band structure. Next, recent progress in SiC metal-oxide-semiconductor field effect transistors, which are the most important unipolar devices, is described with an emphasis on the improvement of channel mobility at the SiO2/SiC interface. The development of SiC bipolar devices such as pin diodes and insulated gate bipolar transistors, which are promising for ultrahigh-voltage (>10 kV) applications, are introduced and the effect of carrier lifetime enhancement is demonstrated. The current status of mass production and how SiC power devices can contribute to energy saving are also described.\",\"PeriodicalId\":20707,\"journal\":{\"name\":\"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences\",\"volume\":\"98 1\",\"pages\":\"161 - 189\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.2183/pjab.98.011\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.2183/pjab.98.011","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
High-voltage SiC power devices for improved energy efficiency
Silicon carbide (SiC) power devices significantly outperform the well-established silicon (Si) devices in terms of high breakdown voltage, low power loss, and fast switching. This review briefly introduces the major features of SiC power devices and then presents research works on breakdown phenomena in SiC pn junctions and related discussion which takes into account the energy band structure. Next, recent progress in SiC metal-oxide-semiconductor field effect transistors, which are the most important unipolar devices, is described with an emphasis on the improvement of channel mobility at the SiO2/SiC interface. The development of SiC bipolar devices such as pin diodes and insulated gate bipolar transistors, which are promising for ultrahigh-voltage (>10 kV) applications, are introduced and the effect of carrier lifetime enhancement is demonstrated. The current status of mass production and how SiC power devices can contribute to energy saving are also described.
期刊介绍:
The Proceedings of the Japan Academy Ser. B (PJA-B) is a scientific publication of the Japan Academy with a 90-year history, and covers all branches of natural sciences, except for mathematics, which is covered by the PJA-A. It is published ten times a year and is distributed widely throughout the world and can be read and obtained free of charge through the world wide web.