超薄CrTe3和CrTe2范德华磁体的平面异质结

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2022-02-22 DOI:10.1021/acsnano.1c10555
Rui Li, Jin-Hua Nie, Jing-Jing Xian, Jian-Wang Zhou, Yan Lu, Mao-Peng Miao, Wen-Hao Zhang, Ying-Shuang Fu*
{"title":"超薄CrTe3和CrTe2范德华磁体的平面异质结","authors":"Rui Li,&nbsp;Jin-Hua Nie,&nbsp;Jing-Jing Xian,&nbsp;Jian-Wang Zhou,&nbsp;Yan Lu,&nbsp;Mao-Peng Miao,&nbsp;Wen-Hao Zhang,&nbsp;Ying-Shuang Fu*","doi":"10.1021/acsnano.1c10555","DOIUrl":null,"url":null,"abstract":"<p >The fabrication of planar heterojunctions with magnetic van der Waals ultrathin crystals is essential for constructing miniaturized spintronic devices but is yet to be realized. Here, we report the growth of CrTe<sub>3</sub> and CrTe<sub>2</sub> ultrathin films with molecular beam epitaxy and characterize their morphological and electronic structure through low-temperature scanning tunneling microscopy/spectroscopy. The former is identified as a Mott insulator, and the latter has shown a robust magnetic order previously. Through vacuum annealing, CrTe<sub>3</sub> can be transformed into CrTe<sub>2</sub>, whose relative ratio is controlled <i>via</i> the annealing time. This renders the feasibility of constructing CrTe<sub>3</sub>–CrTe<sub>2</sub> planar heterojunctions, which express atomically sharp interfaces and smooth band bending. We also identified a superstructure conceivably formed <i>via</i> hybrid units of CrTe<sub>3</sub> and CrTe<sub>2</sub>, whose electronic structure exhibits stunning tunability with the length of the superstructure. Our study sets a foundation for the development of magnetic tunneling junctions for building spintronic circuits and engineering electronic states in artificial superlattice structures.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 3","pages":"4348–4356"},"PeriodicalIF":16.0000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Planar Heterojunction of Ultrathin CrTe3 and CrTe2 van der Waals Magnet\",\"authors\":\"Rui Li,&nbsp;Jin-Hua Nie,&nbsp;Jing-Jing Xian,&nbsp;Jian-Wang Zhou,&nbsp;Yan Lu,&nbsp;Mao-Peng Miao,&nbsp;Wen-Hao Zhang,&nbsp;Ying-Shuang Fu*\",\"doi\":\"10.1021/acsnano.1c10555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The fabrication of planar heterojunctions with magnetic van der Waals ultrathin crystals is essential for constructing miniaturized spintronic devices but is yet to be realized. Here, we report the growth of CrTe<sub>3</sub> and CrTe<sub>2</sub> ultrathin films with molecular beam epitaxy and characterize their morphological and electronic structure through low-temperature scanning tunneling microscopy/spectroscopy. The former is identified as a Mott insulator, and the latter has shown a robust magnetic order previously. Through vacuum annealing, CrTe<sub>3</sub> can be transformed into CrTe<sub>2</sub>, whose relative ratio is controlled <i>via</i> the annealing time. This renders the feasibility of constructing CrTe<sub>3</sub>–CrTe<sub>2</sub> planar heterojunctions, which express atomically sharp interfaces and smooth band bending. We also identified a superstructure conceivably formed <i>via</i> hybrid units of CrTe<sub>3</sub> and CrTe<sub>2</sub>, whose electronic structure exhibits stunning tunability with the length of the superstructure. Our study sets a foundation for the development of magnetic tunneling junctions for building spintronic circuits and engineering electronic states in artificial superlattice structures.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"16 3\",\"pages\":\"4348–4356\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2022-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.1c10555\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.1c10555","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

利用磁性范德华超薄晶体制造平面异质结对于构建小型化自旋电子器件是必不可少的,但目前尚未实现。本文报道了CrTe3和CrTe2超薄膜的分子束外延生长,并通过低温扫描隧道显微镜/光谱学表征了它们的形态和电子结构。前者被确定为莫特绝缘体,后者先前已显示出鲁棒磁序。通过真空退火,可以将CrTe3转化为CrTe2,通过退火时间控制其相对比。这使得构建CrTe3-CrTe2平面异质结成为可能,该异质结表现出原子尖锐的界面和光滑的能带弯曲。我们还发现了一种可能由CrTe3和CrTe2混合单元形成的上层结构,其电子结构随着上层结构的长度表现出惊人的可调性。我们的研究为在人工超晶格结构中建立自旋电子电路和工程电子态的磁性隧道结的发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Planar Heterojunction of Ultrathin CrTe3 and CrTe2 van der Waals Magnet

Planar Heterojunction of Ultrathin CrTe3 and CrTe2 van der Waals Magnet

The fabrication of planar heterojunctions with magnetic van der Waals ultrathin crystals is essential for constructing miniaturized spintronic devices but is yet to be realized. Here, we report the growth of CrTe3 and CrTe2 ultrathin films with molecular beam epitaxy and characterize their morphological and electronic structure through low-temperature scanning tunneling microscopy/spectroscopy. The former is identified as a Mott insulator, and the latter has shown a robust magnetic order previously. Through vacuum annealing, CrTe3 can be transformed into CrTe2, whose relative ratio is controlled via the annealing time. This renders the feasibility of constructing CrTe3–CrTe2 planar heterojunctions, which express atomically sharp interfaces and smooth band bending. We also identified a superstructure conceivably formed via hybrid units of CrTe3 and CrTe2, whose electronic structure exhibits stunning tunability with the length of the superstructure. Our study sets a foundation for the development of magnetic tunneling junctions for building spintronic circuits and engineering electronic states in artificial superlattice structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信