带chaplygin型算子的混合型方程的边值求右边问题

K. Sabitov, I.A. Burkhanova (Haji)
{"title":"带chaplygin型算子的混合型方程的边值求右边问题","authors":"K. Sabitov, I.A. Burkhanova (Haji)","doi":"10.32523/2306-6172-2021-9-4-26-50","DOIUrl":null,"url":null,"abstract":"In this paper, we study the inverse problem for a mixed-type equation with power degeneracy on a transition line by definition of its right-hand side, depending on the spatial coordinate. The theory of identity has been proved. In the case of degree degeneracy, the uniqueness criterion for the solution of the problem is proved, and the solution itself is con- structed in the form of a sum of orthogonal series. The consistency of series in the class of solutions of the given equation is justified and the validity of the solution with respect to the boundary conditions is proved.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE BOUNDARY VALUE PROBLEM OF FINDING A RIGHT-HAND SIDE FOR MIXED TYPE EQUATION WITH CHAPLYGIN’S TYPE OPERATOR\",\"authors\":\"K. Sabitov, I.A. Burkhanova (Haji)\",\"doi\":\"10.32523/2306-6172-2021-9-4-26-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the inverse problem for a mixed-type equation with power degeneracy on a transition line by definition of its right-hand side, depending on the spatial coordinate. The theory of identity has been proved. In the case of degree degeneracy, the uniqueness criterion for the solution of the problem is proved, and the solution itself is con- structed in the form of a sum of orthogonal series. The consistency of series in the class of solutions of the given equation is justified and the validity of the solution with respect to the boundary conditions is proved.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2021-9-4-26-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2021-9-4-26-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有幂退化的混合型方程在过渡线上的逆问题。同一性理论已被证明。在度退化的情况下,证明了该问题解的唯一性准则,并将解本身构造为正交级数和的形式。证明了给定方程解类中级数的相合性,并证明了解在边界条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
THE BOUNDARY VALUE PROBLEM OF FINDING A RIGHT-HAND SIDE FOR MIXED TYPE EQUATION WITH CHAPLYGIN’S TYPE OPERATOR
In this paper, we study the inverse problem for a mixed-type equation with power degeneracy on a transition line by definition of its right-hand side, depending on the spatial coordinate. The theory of identity has been proved. In the case of degree degeneracy, the uniqueness criterion for the solution of the problem is proved, and the solution itself is con- structed in the form of a sum of orthogonal series. The consistency of series in the class of solutions of the given equation is justified and the validity of the solution with respect to the boundary conditions is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信