Ting Chen , Gabriel D. Gwanmesia , Lars Ehm , Charles Le Losq , Daniel R. Neuville , Brian L. Phillips , Baosheng Li , Robert C. Liebermann
{"title":"多晶KAlSi3O8 hollandite [liebermannite]的合成与表征:声速与压强在室温下达到13 GPa","authors":"Ting Chen , Gabriel D. Gwanmesia , Lars Ehm , Charles Le Losq , Daniel R. Neuville , Brian L. Phillips , Baosheng Li , Robert C. Liebermann","doi":"10.1016/j.crte.2018.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>A polycrystalline specimen of liebermannite [KAlSi<sub>3</sub>O<sub>8</sub> hollandite] was synthesized at 14.5<!--> <!-->GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: <em>I4/m</em>] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13<!--> <!-->GPa at room T in a uniaxial split-cylinder apparatus using Al<sub>2</sub>O<sub>3</sub> as a pressure marker. Finite strain analysis of the ultrasonic data yielded <em>K</em><sub>S<em>0</em></sub> <!-->=<!--> <!-->145(1)<!--> <!-->GPa, <em>K</em><sub>0</sub>′<!--> <!-->=<!--> <!-->4.9(2), <em>G</em><sub>0</sub> <!-->=<!--> <!-->92.3(3)<!--> <!-->GPa, <em>G</em><sub><em>0</em></sub>′<!--> <!-->=<!--> <!-->1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to <em>V</em><sub>P0</sub> <!-->=<!--> <!-->8.4(1)<!--> <!-->km/s,<!--> <!-->V<sub>S<em>0</em></sub> <!-->=<!--> <!-->4.9(1)<!--> <!-->km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 113-120"},"PeriodicalIF":2.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.09.009","citationCount":"3","resultStr":"{\"title\":\"Synthesis and characterization of polycrystalline KAlSi3O8 hollandite [liebermannite]: Sound velocities vs. pressure to 13 GPa at room temperature\",\"authors\":\"Ting Chen , Gabriel D. Gwanmesia , Lars Ehm , Charles Le Losq , Daniel R. Neuville , Brian L. Phillips , Baosheng Li , Robert C. Liebermann\",\"doi\":\"10.1016/j.crte.2018.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A polycrystalline specimen of liebermannite [KAlSi<sub>3</sub>O<sub>8</sub> hollandite] was synthesized at 14.5<!--> <!-->GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: <em>I4/m</em>] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13<!--> <!-->GPa at room T in a uniaxial split-cylinder apparatus using Al<sub>2</sub>O<sub>3</sub> as a pressure marker. Finite strain analysis of the ultrasonic data yielded <em>K</em><sub>S<em>0</em></sub> <!-->=<!--> <!-->145(1)<!--> <!-->GPa, <em>K</em><sub>0</sub>′<!--> <!-->=<!--> <!-->4.9(2), <em>G</em><sub>0</sub> <!-->=<!--> <!-->92.3(3)<!--> <!-->GPa, <em>G</em><sub><em>0</em></sub>′<!--> <!-->=<!--> <!-->1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to <em>V</em><sub>P0</sub> <!-->=<!--> <!-->8.4(1)<!--> <!-->km/s,<!--> <!-->V<sub>S<em>0</em></sub> <!-->=<!--> <!-->4.9(1)<!--> <!-->km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.</p></div>\",\"PeriodicalId\":50651,\"journal\":{\"name\":\"Comptes Rendus Geoscience\",\"volume\":\"351 2\",\"pages\":\"Pages 113-120\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crte.2018.09.009\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631071318301329\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631071318301329","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and characterization of polycrystalline KAlSi3O8 hollandite [liebermannite]: Sound velocities vs. pressure to 13 GPa at room temperature
A polycrystalline specimen of liebermannite [KAlSi3O8 hollandite] was synthesized at 14.5 GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: I4/m] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13 GPa at room T in a uniaxial split-cylinder apparatus using Al2O3 as a pressure marker. Finite strain analysis of the ultrasonic data yielded KS0 = 145(1) GPa, K0′ = 4.9(2), G0 = 92.3(3) GPa, G0′ = 1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to VP0 = 8.4(1) km/s, VS0 = 4.9(1) km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.
期刊介绍:
Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community.
It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.