黑参协同顺铂改善两种人乳腺癌细胞系的凋亡和代谢紊乱,并降低耐药

Q4 Pharmacology, Toxicology and Pharmaceutics
Shiva Roshankhah, A. Ghanbari, M. Salahshoor, M. Esmaeli
{"title":"黑参协同顺铂改善两种人乳腺癌细胞系的凋亡和代谢紊乱,并降低耐药","authors":"Shiva Roshankhah, A. Ghanbari, M. Salahshoor, M. Esmaeli","doi":"10.32598/ijt.16.2.888.1","DOIUrl":null,"url":null,"abstract":"Background: Despite modern developments in its management, still major concerns remain about drug resistance in chemotherapy. Natural adjuvants combined with chemotherapy might be the answer. We examined the anti-cancer, anti-proliferative and synergistic effects of Sambucus nigra extract with cisplatin chemotherapy (CDDP) on MCF-7 and MDA-MB-231 human cancer cell lines. Methods: MCF-7 and MDA-MB-231 cell lines were cultured in DMEM culture media, containing 10% FBS and 100 U/ml penicillin/streptomycin. The anti-proliferative activity of SNA, CDDP and their synergic doses were determined using MTT method. Next, the apoptotic, metabolic, and cellular resistance gene expressions were measured through real-time quantitative PCR technique. To show the apoptosis effects and to diagnose cellular damages, an annexin V/propidium iodide (AV/PI) kit and malondialdehyde level were performed, respectively. Results: The synergic doses of SNA and CDDP in MCF-7 were 1.25µM CDDP+1.25µM SNA and on MDA-MB-231 was 2.5µM CDDP+2.5µM SNA. The results of real-time PCR showed that SNA induced apoptosis, disrupted metabolic pathways and reduced cellular drug resistance. In addition, the combination of SNA with CDDP compared with CDDP alone was able to change the expression of these genes and increase the rate of MDA and apoptosis generation (P<0.05). Conclusion: The outcomes of this investigation indicate that SNA, as a herbal supplement, may be a candidate for increasing the effect of CDDP therapy in the treatment of breast cancers. This synergy was not estrogen-dependent in the MDA-MB-231 cells, promoted apoptosis, cell damages, disorders of metabolism, and reduced the drug resistance in the cancer cells.","PeriodicalId":14637,"journal":{"name":"Iranian Journal of Toxicology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sambucus Nigra Synergizes Cisplatin to Improve Apoptosis and Metabolic Disorders, and Reduce Drug Resistance in Two Human Breast Cancer Cell Lines\",\"authors\":\"Shiva Roshankhah, A. Ghanbari, M. Salahshoor, M. Esmaeli\",\"doi\":\"10.32598/ijt.16.2.888.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Despite modern developments in its management, still major concerns remain about drug resistance in chemotherapy. Natural adjuvants combined with chemotherapy might be the answer. We examined the anti-cancer, anti-proliferative and synergistic effects of Sambucus nigra extract with cisplatin chemotherapy (CDDP) on MCF-7 and MDA-MB-231 human cancer cell lines. Methods: MCF-7 and MDA-MB-231 cell lines were cultured in DMEM culture media, containing 10% FBS and 100 U/ml penicillin/streptomycin. The anti-proliferative activity of SNA, CDDP and their synergic doses were determined using MTT method. Next, the apoptotic, metabolic, and cellular resistance gene expressions were measured through real-time quantitative PCR technique. To show the apoptosis effects and to diagnose cellular damages, an annexin V/propidium iodide (AV/PI) kit and malondialdehyde level were performed, respectively. Results: The synergic doses of SNA and CDDP in MCF-7 were 1.25µM CDDP+1.25µM SNA and on MDA-MB-231 was 2.5µM CDDP+2.5µM SNA. The results of real-time PCR showed that SNA induced apoptosis, disrupted metabolic pathways and reduced cellular drug resistance. In addition, the combination of SNA with CDDP compared with CDDP alone was able to change the expression of these genes and increase the rate of MDA and apoptosis generation (P<0.05). Conclusion: The outcomes of this investigation indicate that SNA, as a herbal supplement, may be a candidate for increasing the effect of CDDP therapy in the treatment of breast cancers. This synergy was not estrogen-dependent in the MDA-MB-231 cells, promoted apoptosis, cell damages, disorders of metabolism, and reduced the drug resistance in the cancer cells.\",\"PeriodicalId\":14637,\"journal\":{\"name\":\"Iranian Journal of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/ijt.16.2.888.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/ijt.16.2.888.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

背景:尽管化疗的管理有了现代发展,但化疗的耐药问题仍然是人们关注的主要问题。天然佐剂结合化疗可能是答案。研究了黑参提取物联合顺铂化疗(CDDP)对MCF-7和MDA-MB-231人癌细胞的抗癌、抗增殖和协同作用。方法:将MCF-7和MDA-MB-231细胞系培养于含有10%牛血清和100 U/ml青霉素/链霉素的DMEM培养基中。采用MTT法测定SNA、CDDP的抗增殖活性及其协同剂量。其次,通过实时定量PCR技术检测凋亡、代谢和细胞抗性基因的表达。为了显示细胞凋亡作用和诊断细胞损伤,分别进行膜联蛋白V/碘化丙啶(AV/PI)检测和丙二醛水平检测。结果:SNA和CDDP对MCF-7的协同作用剂量为1.25µM CDDP+1.25µM SNA,对MDA-MB-231的协同作用剂量为2.5µM CDDP+2.5µM SNA。实时PCR结果显示,SNA诱导细胞凋亡,破坏代谢途径,降低细胞耐药性。此外,SNA联合CDDP与单独CDDP相比,可以改变这些基因的表达,增加MDA和细胞凋亡的发生率(P<0.05)。结论:本研究结果表明,SNA作为一种草药补充剂,可能是提高CDDP治疗乳腺癌效果的候选药物。这种协同作用在MDA-MB-231细胞中不依赖雌激素,促进了细胞凋亡、细胞损伤、代谢紊乱,并降低了癌细胞的耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sambucus Nigra Synergizes Cisplatin to Improve Apoptosis and Metabolic Disorders, and Reduce Drug Resistance in Two Human Breast Cancer Cell Lines
Background: Despite modern developments in its management, still major concerns remain about drug resistance in chemotherapy. Natural adjuvants combined with chemotherapy might be the answer. We examined the anti-cancer, anti-proliferative and synergistic effects of Sambucus nigra extract with cisplatin chemotherapy (CDDP) on MCF-7 and MDA-MB-231 human cancer cell lines. Methods: MCF-7 and MDA-MB-231 cell lines were cultured in DMEM culture media, containing 10% FBS and 100 U/ml penicillin/streptomycin. The anti-proliferative activity of SNA, CDDP and their synergic doses were determined using MTT method. Next, the apoptotic, metabolic, and cellular resistance gene expressions were measured through real-time quantitative PCR technique. To show the apoptosis effects and to diagnose cellular damages, an annexin V/propidium iodide (AV/PI) kit and malondialdehyde level were performed, respectively. Results: The synergic doses of SNA and CDDP in MCF-7 were 1.25µM CDDP+1.25µM SNA and on MDA-MB-231 was 2.5µM CDDP+2.5µM SNA. The results of real-time PCR showed that SNA induced apoptosis, disrupted metabolic pathways and reduced cellular drug resistance. In addition, the combination of SNA with CDDP compared with CDDP alone was able to change the expression of these genes and increase the rate of MDA and apoptosis generation (P<0.05). Conclusion: The outcomes of this investigation indicate that SNA, as a herbal supplement, may be a candidate for increasing the effect of CDDP therapy in the treatment of breast cancers. This synergy was not estrogen-dependent in the MDA-MB-231 cells, promoted apoptosis, cell damages, disorders of metabolism, and reduced the drug resistance in the cancer cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Toxicology
Iranian Journal of Toxicology Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.60
自引率
0.00%
发文量
24
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信