{"title":"转换截面法在复合材料加固层合板梁分析中的应用","authors":"M. Bakalarz, P. Kossakowski","doi":"10.3390/fib11030024","DOIUrl":null,"url":null,"abstract":"Due to the high cost of laboratory testing, many researchers are considering developing methods to predict the behavior of unreinforced and reinforced wood beams. This work aims to create either numerical or analytical models useful for extrapolating already conducted tests to other schemes/materials used as reinforcement. In the case of timber structures, due to the complexity of timber, this task is difficult. The first part of the article presents an analysis of the suitability of using a simplified mathematical model based on the equivalent cross-section method to describe the behavior of unreinforced and reinforced with carbon-fibre-reinforced polymer (CFRP) composite full-size laminated veneer lumber (LVL) beams. The theoretical results were compared with the results of conducted experimental tests. The scope of the analysis includes the estimation of modulus of rupture, bending stiffness, and determination of the neutral axis position. The equivalent cross-section method showed good agreement in determining the bending stiffness and neutral axis position of the strengthened sections. However, the suitability of using the equivalent cross-section method to estimate the load-carrying capacity of a cross-section reinforced with fiber composites still needs to be confirmed, which, according to the authors, is due to the differences between the assumed (linear) and actual (nonlinear) strain distribution in the compression zone. The second part uses the equivalent cross-section method to estimate the predicted bending stiffness of LVL beams strengthened with aramid-fibre-reinforced polymer (AFRP), glass-fibre-reinforced polymer (GFRP), and ultra-high modulus carbon-fibre-reinforced polymer (CFRP UHM) sheets. The proposed method can be used for preliminary evaluation of strengthening effectiveness of LVL beams.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Transformed Cross-Section Method for Analytical Analysis of Laminated Veneer Lumber Beams Strengthened with Composite Materials\",\"authors\":\"M. Bakalarz, P. Kossakowski\",\"doi\":\"10.3390/fib11030024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high cost of laboratory testing, many researchers are considering developing methods to predict the behavior of unreinforced and reinforced wood beams. This work aims to create either numerical or analytical models useful for extrapolating already conducted tests to other schemes/materials used as reinforcement. In the case of timber structures, due to the complexity of timber, this task is difficult. The first part of the article presents an analysis of the suitability of using a simplified mathematical model based on the equivalent cross-section method to describe the behavior of unreinforced and reinforced with carbon-fibre-reinforced polymer (CFRP) composite full-size laminated veneer lumber (LVL) beams. The theoretical results were compared with the results of conducted experimental tests. The scope of the analysis includes the estimation of modulus of rupture, bending stiffness, and determination of the neutral axis position. The equivalent cross-section method showed good agreement in determining the bending stiffness and neutral axis position of the strengthened sections. However, the suitability of using the equivalent cross-section method to estimate the load-carrying capacity of a cross-section reinforced with fiber composites still needs to be confirmed, which, according to the authors, is due to the differences between the assumed (linear) and actual (nonlinear) strain distribution in the compression zone. The second part uses the equivalent cross-section method to estimate the predicted bending stiffness of LVL beams strengthened with aramid-fibre-reinforced polymer (AFRP), glass-fibre-reinforced polymer (GFRP), and ultra-high modulus carbon-fibre-reinforced polymer (CFRP UHM) sheets. The proposed method can be used for preliminary evaluation of strengthening effectiveness of LVL beams.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11030024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of Transformed Cross-Section Method for Analytical Analysis of Laminated Veneer Lumber Beams Strengthened with Composite Materials
Due to the high cost of laboratory testing, many researchers are considering developing methods to predict the behavior of unreinforced and reinforced wood beams. This work aims to create either numerical or analytical models useful for extrapolating already conducted tests to other schemes/materials used as reinforcement. In the case of timber structures, due to the complexity of timber, this task is difficult. The first part of the article presents an analysis of the suitability of using a simplified mathematical model based on the equivalent cross-section method to describe the behavior of unreinforced and reinforced with carbon-fibre-reinforced polymer (CFRP) composite full-size laminated veneer lumber (LVL) beams. The theoretical results were compared with the results of conducted experimental tests. The scope of the analysis includes the estimation of modulus of rupture, bending stiffness, and determination of the neutral axis position. The equivalent cross-section method showed good agreement in determining the bending stiffness and neutral axis position of the strengthened sections. However, the suitability of using the equivalent cross-section method to estimate the load-carrying capacity of a cross-section reinforced with fiber composites still needs to be confirmed, which, according to the authors, is due to the differences between the assumed (linear) and actual (nonlinear) strain distribution in the compression zone. The second part uses the equivalent cross-section method to estimate the predicted bending stiffness of LVL beams strengthened with aramid-fibre-reinforced polymer (AFRP), glass-fibre-reinforced polymer (GFRP), and ultra-high modulus carbon-fibre-reinforced polymer (CFRP UHM) sheets. The proposed method can be used for preliminary evaluation of strengthening effectiveness of LVL beams.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins