{"title":"Pappus定理确定固体和旋转表面质心的推广","authors":"T. Cloete","doi":"10.1177/03064190231188650","DOIUrl":null,"url":null,"abstract":"Extensions to the first and second theorems of Pappus are presented, whereby the centroid of a surface or solid of revolution can be determined using only the geometric properties of the generating plane curve or figure and the arc of revolution. The derivations are well suited to first-year-level courses in mathematics and engineering. From a didactic perspective, the resulting formulas are simple to apply, especially since the required geometric properties are typically available in standard tables of plane sections or relatively routine to derive. Furthermore, the formulas provide a general scaffold for students to attempt problems involving axisymmetric bodies while also reinforcing and embedding their knowledge of the properties of the generating plane shapes. A selection of illustrative problems is discussed that are generally regarded to be challenging for introductory mechanics courses but for which the formulas derived in this article provide straightforward solutions.","PeriodicalId":39952,"journal":{"name":"International Journal of Mechanical Engineering Education","volume":"51 1","pages":"319 - 332"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions to the theorems of Pappus to determine the centroids of solids and surfaces of revolution\",\"authors\":\"T. Cloete\",\"doi\":\"10.1177/03064190231188650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensions to the first and second theorems of Pappus are presented, whereby the centroid of a surface or solid of revolution can be determined using only the geometric properties of the generating plane curve or figure and the arc of revolution. The derivations are well suited to first-year-level courses in mathematics and engineering. From a didactic perspective, the resulting formulas are simple to apply, especially since the required geometric properties are typically available in standard tables of plane sections or relatively routine to derive. Furthermore, the formulas provide a general scaffold for students to attempt problems involving axisymmetric bodies while also reinforcing and embedding their knowledge of the properties of the generating plane shapes. A selection of illustrative problems is discussed that are generally regarded to be challenging for introductory mechanics courses but for which the formulas derived in this article provide straightforward solutions.\",\"PeriodicalId\":39952,\"journal\":{\"name\":\"International Journal of Mechanical Engineering Education\",\"volume\":\"51 1\",\"pages\":\"319 - 332\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03064190231188650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03064190231188650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Extensions to the theorems of Pappus to determine the centroids of solids and surfaces of revolution
Extensions to the first and second theorems of Pappus are presented, whereby the centroid of a surface or solid of revolution can be determined using only the geometric properties of the generating plane curve or figure and the arc of revolution. The derivations are well suited to first-year-level courses in mathematics and engineering. From a didactic perspective, the resulting formulas are simple to apply, especially since the required geometric properties are typically available in standard tables of plane sections or relatively routine to derive. Furthermore, the formulas provide a general scaffold for students to attempt problems involving axisymmetric bodies while also reinforcing and embedding their knowledge of the properties of the generating plane shapes. A selection of illustrative problems is discussed that are generally regarded to be challenging for introductory mechanics courses but for which the formulas derived in this article provide straightforward solutions.
期刊介绍:
The International Journal of Mechanical Engineering Education is aimed at teachers and trainers of mechanical engineering students in higher education and focuses on the discussion of the principles and practices of training professional, technical and mechanical engineers and those in related fields. It encourages articles about new experimental methods, and laboratory techniques, and includes book reviews and highlights of recent articles in this field.