健康与疾病中胸主动脉的生物化学力学

IF 5 Q1 ENGINEERING, BIOMEDICAL
Selda Sherifova and, G. Holzapfel
{"title":"健康与疾病中胸主动脉的生物化学力学","authors":"Selda Sherifova and, G. Holzapfel","doi":"10.1088/2516-1091/ab9a29","DOIUrl":null,"url":null,"abstract":"Aneurysms and dissections of the thoracic aorta are life threatening events with poorly understood pathophysiologies which may have genetic origins. By starting with an introduction to these pathologies, we focus on the biochemomechanics of the healthy thoracic aorta. Specifically, we describe the microstructure and the mechanics of the aortic tissue since it is known that the microstructure strongly influences the biomechanical behavior. This relationship is then complemented by providing more detailed information on the selected extracellular matrix components (collagen, elastic fibers and proteoglycans) and smooth muscle cells. More specifically, we introduce the roles smooth muscle cells play in the function of the aortic wall: actively (mechanically) with their contractile abilities and passively by regulating the composition of the extracellular matrix they are embedded in, in particular via the transforming growth factor β (TGF-β) pathway. Subsequently, we summarize the microstructural changes in thoracic aortic aneurysms and dissections in connection with selected risk factors and genetic mutations, and couple these changes with the findings on the biomechanical behavior of the pathological tissues. Finally, we provide a summary and concluding remarks.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2516-1091/ab9a29","citationCount":"13","resultStr":"{\"title\":\"Biochemomechanics of the thoracic aorta in health and disease\",\"authors\":\"Selda Sherifova and, G. Holzapfel\",\"doi\":\"10.1088/2516-1091/ab9a29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aneurysms and dissections of the thoracic aorta are life threatening events with poorly understood pathophysiologies which may have genetic origins. By starting with an introduction to these pathologies, we focus on the biochemomechanics of the healthy thoracic aorta. Specifically, we describe the microstructure and the mechanics of the aortic tissue since it is known that the microstructure strongly influences the biomechanical behavior. This relationship is then complemented by providing more detailed information on the selected extracellular matrix components (collagen, elastic fibers and proteoglycans) and smooth muscle cells. More specifically, we introduce the roles smooth muscle cells play in the function of the aortic wall: actively (mechanically) with their contractile abilities and passively by regulating the composition of the extracellular matrix they are embedded in, in particular via the transforming growth factor β (TGF-β) pathway. Subsequently, we summarize the microstructural changes in thoracic aortic aneurysms and dissections in connection with selected risk factors and genetic mutations, and couple these changes with the findings on the biomechanical behavior of the pathological tissues. Finally, we provide a summary and concluding remarks.\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/2516-1091/ab9a29\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ab9a29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ab9a29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 13

摘要

动脉瘤和胸主动脉夹层是危及生命的事件,其病理生理学知之甚少,可能有遗传起源。通过对这些病理学的介绍,我们将重点关注健康胸主动脉的生物化学机制。具体来说,我们描述了主动脉组织的微观结构和力学,因为众所周知,微观结构对生物力学行为有很大影响。然后通过提供关于所选细胞外基质成分(胶原蛋白、弹性纤维和蛋白聚糖)和平滑肌细胞的更详细信息来补充这种关系。更具体地说,我们介绍了平滑肌细胞在主动脉壁功能中的作用:主动(机械地)发挥其收缩能力,被动地通过调节其嵌入的细胞外基质的组成,特别是通过转化生长因子β(TGF-β)途径。随后,我们总结了胸主动脉瘤和夹层的微观结构变化与选定的危险因素和基因突变有关,并将这些变化与病理组织的生物力学行为相结合。最后,我们提供一个总结和结束语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochemomechanics of the thoracic aorta in health and disease
Aneurysms and dissections of the thoracic aorta are life threatening events with poorly understood pathophysiologies which may have genetic origins. By starting with an introduction to these pathologies, we focus on the biochemomechanics of the healthy thoracic aorta. Specifically, we describe the microstructure and the mechanics of the aortic tissue since it is known that the microstructure strongly influences the biomechanical behavior. This relationship is then complemented by providing more detailed information on the selected extracellular matrix components (collagen, elastic fibers and proteoglycans) and smooth muscle cells. More specifically, we introduce the roles smooth muscle cells play in the function of the aortic wall: actively (mechanically) with their contractile abilities and passively by regulating the composition of the extracellular matrix they are embedded in, in particular via the transforming growth factor β (TGF-β) pathway. Subsequently, we summarize the microstructural changes in thoracic aortic aneurysms and dissections in connection with selected risk factors and genetic mutations, and couple these changes with the findings on the biomechanical behavior of the pathological tissues. Finally, we provide a summary and concluding remarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信