各向异性弹性介质微地震波场的积分方程模拟

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Ujjwal Shekhar, Morten Jakobsen, Einar Iversen, Inga Berre, Florin A. Radu
{"title":"各向异性弹性介质微地震波场的积分方程模拟","authors":"Ujjwal Shekhar,&nbsp;Morten Jakobsen,&nbsp;Einar Iversen,&nbsp;Inga Berre,&nbsp;Florin A. Radu","doi":"10.1111/1365-2478.13416","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a frequency-domain volume integral method to model the microseismic wavefield in heterogeneous anisotropic-elastic media. The elastic wave equation is written as an integral equation of the Lippmann–Schwinger type, and the seismic source is represented as a general moment tensor. The actual medium is split into a background medium and a scattered medium. The background part of the displacement field is computed analytically, but the scattered part requires a numerical solution. The existing matrix-based implementation of the integral equation is computationally inefficient to model the wavefield in three-dimensional earth. An integral equation for the particle displacement is, hence, formulated in a matrix-free manner through the application of the Fourier transform. The biconjugate gradient stabilized method is used to iteratively obtain the solution of this equation. The integral equation method is naturally target oriented, and it is not necessary to fully discretize the model. This is very helpful in the microseismic wavefield computation at receivers in the borehole in many cases; say, for example, we want to focus only on the fluid injection zone in the reservoir–overburden system and not on the whole subsurface region. Additionally, the integral equation system matrix has a low condition number. This provides us flexibility in the selection of the grid size, especially at low frequencies for given wave velocities. Considering all these factors, we apply the numerical scheme to three different models in order of increasing geological complexity. We obtain the elastic displacement fields corresponding to the different types of moment tensor sources, which prove the utility of this method in microseismic. The generated synthetic data are intended to be used in inversion for the microseismic source and model parameters.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 2","pages":"403-423"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.13416","citationCount":"0","resultStr":"{\"title\":\"Microseismic wavefield modelling in anisotropic elastic media using integral equation method\",\"authors\":\"Ujjwal Shekhar,&nbsp;Morten Jakobsen,&nbsp;Einar Iversen,&nbsp;Inga Berre,&nbsp;Florin A. Radu\",\"doi\":\"10.1111/1365-2478.13416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a frequency-domain volume integral method to model the microseismic wavefield in heterogeneous anisotropic-elastic media. The elastic wave equation is written as an integral equation of the Lippmann–Schwinger type, and the seismic source is represented as a general moment tensor. The actual medium is split into a background medium and a scattered medium. The background part of the displacement field is computed analytically, but the scattered part requires a numerical solution. The existing matrix-based implementation of the integral equation is computationally inefficient to model the wavefield in three-dimensional earth. An integral equation for the particle displacement is, hence, formulated in a matrix-free manner through the application of the Fourier transform. The biconjugate gradient stabilized method is used to iteratively obtain the solution of this equation. The integral equation method is naturally target oriented, and it is not necessary to fully discretize the model. This is very helpful in the microseismic wavefield computation at receivers in the borehole in many cases; say, for example, we want to focus only on the fluid injection zone in the reservoir–overburden system and not on the whole subsurface region. Additionally, the integral equation system matrix has a low condition number. This provides us flexibility in the selection of the grid size, especially at low frequencies for given wave velocities. Considering all these factors, we apply the numerical scheme to three different models in order of increasing geological complexity. We obtain the elastic displacement fields corresponding to the different types of moment tensor sources, which prove the utility of this method in microseismic. The generated synthetic data are intended to be used in inversion for the microseismic source and model parameters.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"72 2\",\"pages\":\"403-423\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.13416\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13416\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13416","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种频率域体积积分方法来模拟非均质各向异性弹性介质中的微地震波场。弹性波动方程被写成Lippmann - Schwinger型积分方程,震源被表示为一般矩张量。实际介质分为背景介质和散射介质。位移场的背景部分是解析计算的,而散射部分则需要数值求解。现有的基于矩阵的积分方程的实现在计算上效率低下,无法模拟三维地球中的波场。因此,通过傅里叶变换的应用,以无矩阵的方式表达了粒子位移的积分方程。采用双共轭梯度稳定法迭代求解该方程。积分方程法具有面向目标的特点,不需要对模型进行完全离散化。这对井内接收机微地震波场的计算有很大的帮助;例如,我们只想关注储层—上覆层系统中的流体注入区,而不是整个地下区域。此外,积分方程组矩阵具有较低的条件数。这为我们选择网格大小提供了灵活性,特别是在给定波速的低频情况下。考虑到所有这些因素,我们将数值格式应用于三种不同的模型,按地质复杂性的大小依次递增。得到了不同类型矩张量源对应的弹性位移场,证明了该方法在微地震中的实用性。生成的综合数据拟用于微震源和模型参数的反演。这篇文章受版权保护。版权所有
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microseismic wavefield modelling in anisotropic elastic media using integral equation method

Microseismic wavefield modelling in anisotropic elastic media using integral equation method

In this paper, we present a frequency-domain volume integral method to model the microseismic wavefield in heterogeneous anisotropic-elastic media. The elastic wave equation is written as an integral equation of the Lippmann–Schwinger type, and the seismic source is represented as a general moment tensor. The actual medium is split into a background medium and a scattered medium. The background part of the displacement field is computed analytically, but the scattered part requires a numerical solution. The existing matrix-based implementation of the integral equation is computationally inefficient to model the wavefield in three-dimensional earth. An integral equation for the particle displacement is, hence, formulated in a matrix-free manner through the application of the Fourier transform. The biconjugate gradient stabilized method is used to iteratively obtain the solution of this equation. The integral equation method is naturally target oriented, and it is not necessary to fully discretize the model. This is very helpful in the microseismic wavefield computation at receivers in the borehole in many cases; say, for example, we want to focus only on the fluid injection zone in the reservoir–overburden system and not on the whole subsurface region. Additionally, the integral equation system matrix has a low condition number. This provides us flexibility in the selection of the grid size, especially at low frequencies for given wave velocities. Considering all these factors, we apply the numerical scheme to three different models in order of increasing geological complexity. We obtain the elastic displacement fields corresponding to the different types of moment tensor sources, which prove the utility of this method in microseismic. The generated synthetic data are intended to be used in inversion for the microseismic source and model parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信