增材制造中粘聚力对粉末层结构的影响

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sudeshna Roy, Mohamad Yousef Shaheen, Thorsten Pöschel
{"title":"增材制造中粘聚力对粉末层结构的影响","authors":"Sudeshna Roy,&nbsp;Mohamad Yousef Shaheen,&nbsp;Thorsten Pöschel","doi":"10.1007/s10035-023-01349-4","DOIUrl":null,"url":null,"abstract":"<div><p>Producing a consistent layer quality for different raw-materials is a challenge for powder-based additive manufacturing. Interparticle cohesion plays a key role on the powder spreading process. In this work, we characterise the structure of deposited layers in the powder-base additive manufacturing process by numerical simulations using the discrete element method. The effect of particle cohesion on the quality of powder layers is evaluated. It is found that higher interparticle cohesion lead to poor spreadability, with more heterogeneous powder layer structure and enhances particle size segregation in the powder layer. We also compare the powder layer quality deposited on a smooth substrate with that on a powder layer. Deposition on a powder layer leads to inferior layer quality of powder layer with higher heterogeneity and higher particle size segregation effects.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01349-4.pdf","citationCount":"2","resultStr":"{\"title\":\"Effect of cohesion on structure of powder layers in additive manufacturing\",\"authors\":\"Sudeshna Roy,&nbsp;Mohamad Yousef Shaheen,&nbsp;Thorsten Pöschel\",\"doi\":\"10.1007/s10035-023-01349-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Producing a consistent layer quality for different raw-materials is a challenge for powder-based additive manufacturing. Interparticle cohesion plays a key role on the powder spreading process. In this work, we characterise the structure of deposited layers in the powder-base additive manufacturing process by numerical simulations using the discrete element method. The effect of particle cohesion on the quality of powder layers is evaluated. It is found that higher interparticle cohesion lead to poor spreadability, with more heterogeneous powder layer structure and enhances particle size segregation in the powder layer. We also compare the powder layer quality deposited on a smooth substrate with that on a powder layer. Deposition on a powder layer leads to inferior layer quality of powder layer with higher heterogeneity and higher particle size segregation effects.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-023-01349-4.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01349-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01349-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

为不同的原材料生产一致的层质量是粉末增材制造的一个挑战。颗粒间黏结力对粉末扩散过程起着关键作用。在这项工作中,我们通过使用离散元方法的数值模拟来表征粉末基增材制造过程中沉积层的结构。评价了颗粒内聚性对粉末层质量的影响。研究发现,颗粒间黏结力越高,铺展性能越差,粉末层结构越不均匀,粉末层内粒度偏析加剧。我们还比较了沉积在光滑基材上的粉末层质量与沉积在粉末层上的粉末层质量。沉积在粉末层上导致粉末层质量差,非均质性高,粒度偏析效应强。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of cohesion on structure of powder layers in additive manufacturing

Effect of cohesion on structure of powder layers in additive manufacturing

Producing a consistent layer quality for different raw-materials is a challenge for powder-based additive manufacturing. Interparticle cohesion plays a key role on the powder spreading process. In this work, we characterise the structure of deposited layers in the powder-base additive manufacturing process by numerical simulations using the discrete element method. The effect of particle cohesion on the quality of powder layers is evaluated. It is found that higher interparticle cohesion lead to poor spreadability, with more heterogeneous powder layer structure and enhances particle size segregation in the powder layer. We also compare the powder layer quality deposited on a smooth substrate with that on a powder layer. Deposition on a powder layer leads to inferior layer quality of powder layer with higher heterogeneity and higher particle size segregation effects.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信