{"title":"高熵NaCl型金属硫族化合物作为钾离子存储材料:鸡尾酒效应的作用","authors":"Che-Bin Chang , Ying-Rui Lu , Hsing-Yu Tuan","doi":"10.1016/j.ensm.2023.102770","DOIUrl":null,"url":null,"abstract":"<div><p>The drastic volume expansion of active materials and the shuttle effect of polychalcogenides hindered the development of anode materials for potassium-ion batteries (PIBs). Thus, various strategies have been used to overcome the negative effects associated with potassiation. Here, we propose a NaCl-type high-entropy metal chalcogenide (HEMC) prepared using a simple melting method as an anode material for PIBs. Unlike traditional high-entropy materials comprising inactive metals, NaCl-type HEMCs can realize the occupancy of cationic sites by active metals. We show that AgSnSbSe<sub>1.5</sub>Te<sub>1.5</sub>, a HEMC, produces short-range tiny cells during phase-change energy storage reactions, reconciling the participation of active and inactive metals to form various heterointerfaces and different functional metal nanoparticles. The kinetic and density functional theory analysis showed that the formation of heterointerfaces decreased the diffusion energy barrier of K<sup>+</sup> and the inactive metal silver provided appropriate adsorption energy, suppressing the latent shuttle effect. The results show enhanced electrochemical performance owing to the elemental composition of high-entropy materials and the formation of tunable heterointerfaces and functional nanoparticles in electrochemical reactions, offering a new concept for the design of PIB anode materials.</p></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"59 ","pages":"Article 102770"},"PeriodicalIF":18.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-entropy NaCl-type metal chalcogenides as K-ion storage materials: role of the cocktail effect\",\"authors\":\"Che-Bin Chang , Ying-Rui Lu , Hsing-Yu Tuan\",\"doi\":\"10.1016/j.ensm.2023.102770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The drastic volume expansion of active materials and the shuttle effect of polychalcogenides hindered the development of anode materials for potassium-ion batteries (PIBs). Thus, various strategies have been used to overcome the negative effects associated with potassiation. Here, we propose a NaCl-type high-entropy metal chalcogenide (HEMC) prepared using a simple melting method as an anode material for PIBs. Unlike traditional high-entropy materials comprising inactive metals, NaCl-type HEMCs can realize the occupancy of cationic sites by active metals. We show that AgSnSbSe<sub>1.5</sub>Te<sub>1.5</sub>, a HEMC, produces short-range tiny cells during phase-change energy storage reactions, reconciling the participation of active and inactive metals to form various heterointerfaces and different functional metal nanoparticles. The kinetic and density functional theory analysis showed that the formation of heterointerfaces decreased the diffusion energy barrier of K<sup>+</sup> and the inactive metal silver provided appropriate adsorption energy, suppressing the latent shuttle effect. The results show enhanced electrochemical performance owing to the elemental composition of high-entropy materials and the formation of tunable heterointerfaces and functional nanoparticles in electrochemical reactions, offering a new concept for the design of PIB anode materials.</p></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"59 \",\"pages\":\"Article 102770\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829723001496\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829723001496","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-entropy NaCl-type metal chalcogenides as K-ion storage materials: role of the cocktail effect
The drastic volume expansion of active materials and the shuttle effect of polychalcogenides hindered the development of anode materials for potassium-ion batteries (PIBs). Thus, various strategies have been used to overcome the negative effects associated with potassiation. Here, we propose a NaCl-type high-entropy metal chalcogenide (HEMC) prepared using a simple melting method as an anode material for PIBs. Unlike traditional high-entropy materials comprising inactive metals, NaCl-type HEMCs can realize the occupancy of cationic sites by active metals. We show that AgSnSbSe1.5Te1.5, a HEMC, produces short-range tiny cells during phase-change energy storage reactions, reconciling the participation of active and inactive metals to form various heterointerfaces and different functional metal nanoparticles. The kinetic and density functional theory analysis showed that the formation of heterointerfaces decreased the diffusion energy barrier of K+ and the inactive metal silver provided appropriate adsorption energy, suppressing the latent shuttle effect. The results show enhanced electrochemical performance owing to the elemental composition of high-entropy materials and the formation of tunable heterointerfaces and functional nanoparticles in electrochemical reactions, offering a new concept for the design of PIB anode materials.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.