柔性制造传感器模块与可编程磁致动器耦合到l -半胱氨酸功能化Ag@Fe3O4配合物,用于鱼组织中的Cu2+检测

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Kuiguo Han, Bin Jiang, Yanqun Tong, Wen Zhang, Xiaobo Zou, Jiyong Shi, Xiaoyu Su
{"title":"柔性制造传感器模块与可编程磁致动器耦合到l -半胱氨酸功能化Ag@Fe3O4配合物,用于鱼组织中的Cu2+检测","authors":"Kuiguo Han,&nbsp;Bin Jiang,&nbsp;Yanqun Tong,&nbsp;Wen Zhang,&nbsp;Xiaobo Zou,&nbsp;Jiyong Shi,&nbsp;Xiaoyu Su","doi":"10.1007/s10544-023-00654-2","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>Heavy metal contamination for seafood, particularly fish, is arising great concerns, and consequentially it is necessary to develop a simple and direct detection method. In this work, Ag@Fe<sub>3</sub>O<sub>4</sub> is successfully prepared by simple solvothermal method, and we present a flexible-fabricated sensor module with assembled programmable magnetic actuators. The resulting sensor integrates a three-electrode system with two programmable magnetic actuators at the bottom of the device, which regulates the amount of current by adjusting the brake to control the adsorption force and vibration. The L-Cysteine functionalized Ag@Fe<sub>3</sub>O<sub>4</sub> is coated on the surface of the electrode, then the Cu<sup>2+</sup> is dropped into the reaction tank. Its performance is studied by cyclic voltammetry and electrochemical impedance spectroscopy, and the key experimental conditions such as deposition potential, deposition time, and electrolyte pH are gradually optimized. Under optimal conditions, Cu<sup>2+</sup> can be detected over a wide linear range (0.01 ~ 4 μM) and at a low LOD (0.34 nM). The results show that the proposed method has a good application prospect in the detection of Cu<sup>2+</sup>. This method is successfully applied to Cu<sup>2+</sup> analysis in fish samples with an acceptable recovery of 93 ~ 102%.</p></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible-fabricated sensor module with programmable magnetic actuators coupled to L-cysteine functionalized Ag@Fe3O4 complexes for Cu2+ detection in fish tissues\",\"authors\":\"Kuiguo Han,&nbsp;Bin Jiang,&nbsp;Yanqun Tong,&nbsp;Wen Zhang,&nbsp;Xiaobo Zou,&nbsp;Jiyong Shi,&nbsp;Xiaoyu Su\",\"doi\":\"10.1007/s10544-023-00654-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract\\n</h2><div><p>Heavy metal contamination for seafood, particularly fish, is arising great concerns, and consequentially it is necessary to develop a simple and direct detection method. In this work, Ag@Fe<sub>3</sub>O<sub>4</sub> is successfully prepared by simple solvothermal method, and we present a flexible-fabricated sensor module with assembled programmable magnetic actuators. The resulting sensor integrates a three-electrode system with two programmable magnetic actuators at the bottom of the device, which regulates the amount of current by adjusting the brake to control the adsorption force and vibration. The L-Cysteine functionalized Ag@Fe<sub>3</sub>O<sub>4</sub> is coated on the surface of the electrode, then the Cu<sup>2+</sup> is dropped into the reaction tank. Its performance is studied by cyclic voltammetry and electrochemical impedance spectroscopy, and the key experimental conditions such as deposition potential, deposition time, and electrolyte pH are gradually optimized. Under optimal conditions, Cu<sup>2+</sup> can be detected over a wide linear range (0.01 ~ 4 μM) and at a low LOD (0.34 nM). The results show that the proposed method has a good application prospect in the detection of Cu<sup>2+</sup>. This method is successfully applied to Cu<sup>2+</sup> analysis in fish samples with an acceptable recovery of 93 ~ 102%.</p></div></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-023-00654-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00654-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

海产品特别是鱼类的重金属污染日益引起人们的关注,因此有必要开发一种简单、直接的检测方法。在这项工作中,通过简单的溶剂热方法成功地制备了Ag@Fe3O4,我们提出了一个柔性制造的传感器模块,并装配了可编程磁致动器。该传感器集成了一个三电极系统,设备底部有两个可编程磁致动器,通过调节制动器来控制吸附力和振动,从而调节电流的大小。将l -半胱氨酸功能化Ag@Fe3O4涂覆在电极表面,然后将Cu2+滴入反应槽中。通过循环伏安法和电化学阻抗谱对其性能进行了研究,并逐步优化了沉积电位、沉积时间、电解质pH等关键实验条件。在最佳条件下,可以在0.01 ~ 4 μM的宽线性范围和0.34 nM的低LOD范围内检测到Cu2+。结果表明,该方法在Cu2+的检测中具有良好的应用前景。该方法成功地应用于鱼类样品中Cu2+的分析,回收率为93 ~ 102%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible-fabricated sensor module with programmable magnetic actuators coupled to L-cysteine functionalized Ag@Fe3O4 complexes for Cu2+ detection in fish tissues

Flexible-fabricated sensor module with programmable magnetic actuators coupled to L-cysteine functionalized Ag@Fe3O4 complexes for Cu2+ detection in fish tissues

Abstract

Heavy metal contamination for seafood, particularly fish, is arising great concerns, and consequentially it is necessary to develop a simple and direct detection method. In this work, Ag@Fe3O4 is successfully prepared by simple solvothermal method, and we present a flexible-fabricated sensor module with assembled programmable magnetic actuators. The resulting sensor integrates a three-electrode system with two programmable magnetic actuators at the bottom of the device, which regulates the amount of current by adjusting the brake to control the adsorption force and vibration. The L-Cysteine functionalized Ag@Fe3O4 is coated on the surface of the electrode, then the Cu2+ is dropped into the reaction tank. Its performance is studied by cyclic voltammetry and electrochemical impedance spectroscopy, and the key experimental conditions such as deposition potential, deposition time, and electrolyte pH are gradually optimized. Under optimal conditions, Cu2+ can be detected over a wide linear range (0.01 ~ 4 μM) and at a low LOD (0.34 nM). The results show that the proposed method has a good application prospect in the detection of Cu2+. This method is successfully applied to Cu2+ analysis in fish samples with an acceptable recovery of 93 ~ 102%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信