一个定量Birman-Menasco有限定理及其在交叉数上的应用

Pub Date : 2022-09-11 DOI:10.1112/topo.12259
Tetsuya Ito
{"title":"一个定量Birman-Menasco有限定理及其在交叉数上的应用","authors":"Tetsuya Ito","doi":"10.1112/topo.12259","DOIUrl":null,"url":null,"abstract":"<p>Birman–Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of the Birman–Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. As applications, we give a solution of the braid index problem, the problem to determine the braid index of a given link, and provide estimates of the crossing number of connected sums or satellites.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A quantitative Birman–Menasco finiteness theorem and its application to crossing number\",\"authors\":\"Tetsuya Ito\",\"doi\":\"10.1112/topo.12259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Birman–Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of the Birman–Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. As applications, we give a solution of the braid index problem, the problem to determine the braid index of a given link, and provide estimates of the crossing number of connected sums or satellites.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Birman-Menasco证明了有有限多个结点具有给定的属和编织指数。我们给出了Birman-Menasco有限定理的一个定量版本,用格数和编织指数估计结的交叉数。作为应用,我们给出了确定给定链路的编织指数问题的解,并给出了连通和或卫星交叉数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A quantitative Birman–Menasco finiteness theorem and its application to crossing number

Birman–Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of the Birman–Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. As applications, we give a solution of the braid index problem, the problem to determine the braid index of a given link, and provide estimates of the crossing number of connected sums or satellites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信