{"title":"一个定量Birman-Menasco有限定理及其在交叉数上的应用","authors":"Tetsuya Ito","doi":"10.1112/topo.12259","DOIUrl":null,"url":null,"abstract":"<p>Birman–Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of the Birman–Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. As applications, we give a solution of the braid index problem, the problem to determine the braid index of a given link, and provide estimates of the crossing number of connected sums or satellites.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A quantitative Birman–Menasco finiteness theorem and its application to crossing number\",\"authors\":\"Tetsuya Ito\",\"doi\":\"10.1112/topo.12259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Birman–Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of the Birman–Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. As applications, we give a solution of the braid index problem, the problem to determine the braid index of a given link, and provide estimates of the crossing number of connected sums or satellites.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A quantitative Birman–Menasco finiteness theorem and its application to crossing number
Birman–Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of the Birman–Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. As applications, we give a solution of the braid index problem, the problem to determine the braid index of a given link, and provide estimates of the crossing number of connected sums or satellites.