一种高时空离子电子单细胞粘度计

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2022-06-29 eCollection Date: 2022-01-01 DOI:10.34133/2022/9859101
Tianyang Zhang, Siyuan Yu, Bing Wang, Yitong Xu, Xiaomei Shi, Weiwei Zhao, Dechen Jiang, Hongyuan Chen, Jingjuan Xu
{"title":"一种高时空离子电子单细胞粘度计","authors":"Tianyang Zhang, Siyuan Yu, Bing Wang, Yitong Xu, Xiaomei Shi, Weiwei Zhao, Dechen Jiang, Hongyuan Chen, Jingjuan Xu","doi":"10.34133/2022/9859101","DOIUrl":null,"url":null,"abstract":"<p><p>Ideal single-cell viscometer has remained unachieved, leaving a gap in current palette of single-cell nanotools. Information of single-cell viscosity could contribute to our knowledge of fundamental biological processes, e.g., mass diffusion, biochemical interaction, and cellular responses to many diseases and pathologies. Although advances have been made to this end, existing methods generally suffer from limitations, e.g., low spatiotemporal resolution. Here, we describe a high spatiotemporal iontronic single-cell viscometer that operates upon a patch clamp integrated with double-barreled nanopores separated by a septum of ca. 32 nm. The system enables reversible electroosmotic manipulation of the adjacent small fluid bridging two nanopores, the viscous alternation of which could be sensitively monitored by the ionic responses. In practical cellular studies, significantly, our findings reveal not only the less deviated medium viscosities than those of lysosomes and mitochondria but also the highest viscosities in the near-nuclear region than those of mitochondrion-dense and lysosome-dense regions. This work has provided an accessible single-cell viscometer and enriched the armory of single-cell nanotools.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":" ","pages":"9859101"},"PeriodicalIF":11.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697695/pdf/","citationCount":"0","resultStr":"{\"title\":\"A High Spatiotemporal Iontronic Single-Cell Viscometer.\",\"authors\":\"Tianyang Zhang, Siyuan Yu, Bing Wang, Yitong Xu, Xiaomei Shi, Weiwei Zhao, Dechen Jiang, Hongyuan Chen, Jingjuan Xu\",\"doi\":\"10.34133/2022/9859101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ideal single-cell viscometer has remained unachieved, leaving a gap in current palette of single-cell nanotools. Information of single-cell viscosity could contribute to our knowledge of fundamental biological processes, e.g., mass diffusion, biochemical interaction, and cellular responses to many diseases and pathologies. Although advances have been made to this end, existing methods generally suffer from limitations, e.g., low spatiotemporal resolution. Here, we describe a high spatiotemporal iontronic single-cell viscometer that operates upon a patch clamp integrated with double-barreled nanopores separated by a septum of ca. 32 nm. The system enables reversible electroosmotic manipulation of the adjacent small fluid bridging two nanopores, the viscous alternation of which could be sensitively monitored by the ionic responses. In practical cellular studies, significantly, our findings reveal not only the less deviated medium viscosities than those of lysosomes and mitochondria but also the highest viscosities in the near-nuclear region than those of mitochondrion-dense and lysosome-dense regions. This work has provided an accessible single-cell viscometer and enriched the armory of single-cell nanotools.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\" \",\"pages\":\"9859101\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9859101\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/2022/9859101","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

理想的单细胞粘度计仍未实现,在目前的单细胞纳米工具中留下了空白。单细胞粘度的信息可以帮助我们了解基本的生物学过程,例如质量扩散、生物化学相互作用以及细胞对许多疾病和病理的反应。尽管在这方面已经取得了进展,但现有的方法通常存在局限性,例如时空分辨率低。在这里,我们描述了一种高时空离子电子单细胞粘度计,该粘度计在膜片钳上工作,膜片钳与由ca隔膜分隔的双管纳米孔集成。32 nm。该系统能够对桥接两个纳米孔的相邻小流体进行可逆的电渗操作,离子响应可以灵敏地监测纳米孔的粘性交替。在实际的细胞研究中,值得注意的是,我们的发现不仅揭示了比溶酶体和线粒体偏离较小的介质粘度,而且在近核区的粘度也比线粒体密集区和溶酶体密集区的粘度最高。这项工作提供了一种可访问的单细胞粘度计,并丰富了单细胞纳米工具的宝库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High Spatiotemporal Iontronic Single-Cell Viscometer.

Ideal single-cell viscometer has remained unachieved, leaving a gap in current palette of single-cell nanotools. Information of single-cell viscosity could contribute to our knowledge of fundamental biological processes, e.g., mass diffusion, biochemical interaction, and cellular responses to many diseases and pathologies. Although advances have been made to this end, existing methods generally suffer from limitations, e.g., low spatiotemporal resolution. Here, we describe a high spatiotemporal iontronic single-cell viscometer that operates upon a patch clamp integrated with double-barreled nanopores separated by a septum of ca. 32 nm. The system enables reversible electroosmotic manipulation of the adjacent small fluid bridging two nanopores, the viscous alternation of which could be sensitively monitored by the ionic responses. In practical cellular studies, significantly, our findings reveal not only the less deviated medium viscosities than those of lysosomes and mitochondria but also the highest viscosities in the near-nuclear region than those of mitochondrion-dense and lysosome-dense regions. This work has provided an accessible single-cell viscometer and enriched the armory of single-cell nanotools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信