{"title":"弱电网中基于LCL滤波器的单栅电流传感器系统的三边控制","authors":"Khushboo Kumari, Amit Kumar Jain","doi":"10.1049/esi2.12106","DOIUrl":null,"url":null,"abstract":"<p>A trilateral control for <i>LCL</i> filter-based system is introduced by the authors with a single grid current sensor in weak grid conditions. The <i>LCL</i> filter increases the complexity when the uncertain nature of the grid comes into the picture. Moreover, the traditional three-loop control technique requires three current sensors on the inverter side, three voltage sensors to sense voltage across the capacitor, and three current sensors on the grid side combined for sensing. A novel trilateral control technique utilising a single sensor is implemented to sense the grid current. This technique has reduced a considerable number of current sensors and voltage sensors. The <i>α</i> axis of grid current is proportional to sensed ‘a’ phase grid current. The <i>β</i> current in the utility grid is acquired by employing the controller reference quantities of the grid current. The computation of another variable, that is, the current in the inverter side inductor and the voltage across the capacitor, is executed by an estimation algorithm. The proposed technique provides the feature of reducing implementation financial value and weight that reduces the complexity and size of hardware. The synchronisation technique is executed by a modified dual second-order generalised integrator digital phase-locked loop for the grid-connected converter. The implemented system offers the advantage of ease of implementation, good performance, and high stability. The validity of the proposed scheme in the implemented system is demonstrated by the simulated waveform obtained on the MATLAB/Simulink platform. Finally, the effectiveness of the proposed system is further justified by the experimental waveform procured from a prototype developed in the laboratory.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"5 4","pages":"365-375"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12106","citationCount":"0","resultStr":"{\"title\":\"Trilateral control for LCL filter-based system with single grid current sensor in weak grid\",\"authors\":\"Khushboo Kumari, Amit Kumar Jain\",\"doi\":\"10.1049/esi2.12106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A trilateral control for <i>LCL</i> filter-based system is introduced by the authors with a single grid current sensor in weak grid conditions. The <i>LCL</i> filter increases the complexity when the uncertain nature of the grid comes into the picture. Moreover, the traditional three-loop control technique requires three current sensors on the inverter side, three voltage sensors to sense voltage across the capacitor, and three current sensors on the grid side combined for sensing. A novel trilateral control technique utilising a single sensor is implemented to sense the grid current. This technique has reduced a considerable number of current sensors and voltage sensors. The <i>α</i> axis of grid current is proportional to sensed ‘a’ phase grid current. The <i>β</i> current in the utility grid is acquired by employing the controller reference quantities of the grid current. The computation of another variable, that is, the current in the inverter side inductor and the voltage across the capacitor, is executed by an estimation algorithm. The proposed technique provides the feature of reducing implementation financial value and weight that reduces the complexity and size of hardware. The synchronisation technique is executed by a modified dual second-order generalised integrator digital phase-locked loop for the grid-connected converter. The implemented system offers the advantage of ease of implementation, good performance, and high stability. The validity of the proposed scheme in the implemented system is demonstrated by the simulated waveform obtained on the MATLAB/Simulink platform. Finally, the effectiveness of the proposed system is further justified by the experimental waveform procured from a prototype developed in the laboratory.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":\"5 4\",\"pages\":\"365-375\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12106\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
作者介绍了一种基于 LCL 滤波器的三边控制系统,在弱电网条件下使用单个电网电流传感器。当电网出现不确定性时,LCL 滤波器会增加复杂性。此外,传统的三环控制技术需要在逆变器侧安装三个电流传感器、三个电压传感器来检测电容器上的电压,以及在电网侧安装三个电流传感器来进行检测。新颖的三边控制技术利用单个传感器来感应电网电流。该技术减少了大量电流传感器和电压传感器。电网电流的 α 轴与感应到的 "a "相电网电流成正比。公用电网中的β电流是通过使用电网电流的控制器参考量获得的。另一个变量,即逆变器侧电感器中的电流和电容器上的电压,则通过估算算法进行计算。所提出的技术具有降低实施财务价值和重量的特点,从而减少了硬件的复杂性和大小。同步技术由并网转换器的改进型双二阶广义积分器数字锁相环执行。所实现的系统具有易于实施、性能良好和稳定性高等优点。在 MATLAB/Simulink 平台上获得的仿真波形证明了所提方案在所实施系统中的有效性。最后,从实验室开发的原型获得的实验波形进一步证明了所提系统的有效性。
Trilateral control for LCL filter-based system with single grid current sensor in weak grid
A trilateral control for LCL filter-based system is introduced by the authors with a single grid current sensor in weak grid conditions. The LCL filter increases the complexity when the uncertain nature of the grid comes into the picture. Moreover, the traditional three-loop control technique requires three current sensors on the inverter side, three voltage sensors to sense voltage across the capacitor, and three current sensors on the grid side combined for sensing. A novel trilateral control technique utilising a single sensor is implemented to sense the grid current. This technique has reduced a considerable number of current sensors and voltage sensors. The α axis of grid current is proportional to sensed ‘a’ phase grid current. The β current in the utility grid is acquired by employing the controller reference quantities of the grid current. The computation of another variable, that is, the current in the inverter side inductor and the voltage across the capacitor, is executed by an estimation algorithm. The proposed technique provides the feature of reducing implementation financial value and weight that reduces the complexity and size of hardware. The synchronisation technique is executed by a modified dual second-order generalised integrator digital phase-locked loop for the grid-connected converter. The implemented system offers the advantage of ease of implementation, good performance, and high stability. The validity of the proposed scheme in the implemented system is demonstrated by the simulated waveform obtained on the MATLAB/Simulink platform. Finally, the effectiveness of the proposed system is further justified by the experimental waveform procured from a prototype developed in the laboratory.