Hamdi Mnasri, M. Franchek, Taoufik Wassar, Yingjie Tang, A. Meziou
{"title":"基于模型的仿真方法用于海底油田体系结构开发的前端工程设计研究","authors":"Hamdi Mnasri, M. Franchek, Taoufik Wassar, Yingjie Tang, A. Meziou","doi":"10.2118/205508-PA","DOIUrl":null,"url":null,"abstract":"\n Presented is a model-based methodology identifying subsea field architectures that satisfy prespecified multiphysics constraints. The proposed methodology prioritizes the identified subsea system using a multiobjective optimization approach considering two objective functions, which are minimizing pressure drop reflecting the maximization of production flow rates and minimizing capital expenditures. The architecture solutions produce manifolds positioning and optimal pipeline routing/sizing. A convex combination approach creates the multiobjective optimization criterion enabling weighting among constraints such as hydraulic, topological, structural, and flow assurance, as well as technical issues and financial limitations. The optimization problem is computationally solved using a hybrid method with a global multistart algorithm that combines a scatter search process with a gradient-based local nonlinear problem solver. A case study is provided to test the proposed methodology including the effect of varying the weights among the constraints. This deep-dive analysis demonstrates the potential offered by the proposed methodology, illustrated by the ability to perform several investigations such as wells-grouping analysis and insulation effect on the overall optimization procedure, as well as to provide a tracking tool for flow-assurance factors, namely erosion and corrosion rates along the subsea layout. Hence, we present a demonstration of the capabilities of the proposed model-based subsea field layout optimization procedure.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":" ","pages":"1-21"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model-Based Simulation Approach for Pre-Front End Engineering Design Studies for Subsea Field Architecture Development\",\"authors\":\"Hamdi Mnasri, M. Franchek, Taoufik Wassar, Yingjie Tang, A. Meziou\",\"doi\":\"10.2118/205508-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Presented is a model-based methodology identifying subsea field architectures that satisfy prespecified multiphysics constraints. The proposed methodology prioritizes the identified subsea system using a multiobjective optimization approach considering two objective functions, which are minimizing pressure drop reflecting the maximization of production flow rates and minimizing capital expenditures. The architecture solutions produce manifolds positioning and optimal pipeline routing/sizing. A convex combination approach creates the multiobjective optimization criterion enabling weighting among constraints such as hydraulic, topological, structural, and flow assurance, as well as technical issues and financial limitations. The optimization problem is computationally solved using a hybrid method with a global multistart algorithm that combines a scatter search process with a gradient-based local nonlinear problem solver. A case study is provided to test the proposed methodology including the effect of varying the weights among the constraints. This deep-dive analysis demonstrates the potential offered by the proposed methodology, illustrated by the ability to perform several investigations such as wells-grouping analysis and insulation effect on the overall optimization procedure, as well as to provide a tracking tool for flow-assurance factors, namely erosion and corrosion rates along the subsea layout. Hence, we present a demonstration of the capabilities of the proposed model-based subsea field layout optimization procedure.\",\"PeriodicalId\":22071,\"journal\":{\"name\":\"Spe Production & Operations\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spe Production & Operations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/205508-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/205508-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Model-Based Simulation Approach for Pre-Front End Engineering Design Studies for Subsea Field Architecture Development
Presented is a model-based methodology identifying subsea field architectures that satisfy prespecified multiphysics constraints. The proposed methodology prioritizes the identified subsea system using a multiobjective optimization approach considering two objective functions, which are minimizing pressure drop reflecting the maximization of production flow rates and minimizing capital expenditures. The architecture solutions produce manifolds positioning and optimal pipeline routing/sizing. A convex combination approach creates the multiobjective optimization criterion enabling weighting among constraints such as hydraulic, topological, structural, and flow assurance, as well as technical issues and financial limitations. The optimization problem is computationally solved using a hybrid method with a global multistart algorithm that combines a scatter search process with a gradient-based local nonlinear problem solver. A case study is provided to test the proposed methodology including the effect of varying the weights among the constraints. This deep-dive analysis demonstrates the potential offered by the proposed methodology, illustrated by the ability to perform several investigations such as wells-grouping analysis and insulation effect on the overall optimization procedure, as well as to provide a tracking tool for flow-assurance factors, namely erosion and corrosion rates along the subsea layout. Hence, we present a demonstration of the capabilities of the proposed model-based subsea field layout optimization procedure.
期刊介绍:
SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.