{"title":"不可压缩MHD系统二维/三维完全解耦、无条件能量稳定转速投影方法","authors":"Ke Zhang, Haiyan Su, Demin Liu","doi":"10.1007/s00021-023-00823-6","DOIUrl":null,"url":null,"abstract":"<div><p>The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D/3D Fully Decoupled, Unconditionally Energy Stable Rotational Velocity Projection Method for Incompressible MHD System\",\"authors\":\"Ke Zhang, Haiyan Su, Demin Liu\",\"doi\":\"10.1007/s00021-023-00823-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00823-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00823-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
2D/3D Fully Decoupled, Unconditionally Energy Stable Rotational Velocity Projection Method for Incompressible MHD System
The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.