不可压缩MHD系统二维/三维完全解耦、无条件能量稳定转速投影方法

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Ke Zhang, Haiyan Su, Demin Liu
{"title":"不可压缩MHD系统二维/三维完全解耦、无条件能量稳定转速投影方法","authors":"Ke Zhang,&nbsp;Haiyan Su,&nbsp;Demin Liu","doi":"10.1007/s00021-023-00823-6","DOIUrl":null,"url":null,"abstract":"<div><p>The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D/3D Fully Decoupled, Unconditionally Energy Stable Rotational Velocity Projection Method for Incompressible MHD System\",\"authors\":\"Ke Zhang,&nbsp;Haiyan Su,&nbsp;Demin Liu\",\"doi\":\"10.1007/s00021-023-00823-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00823-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00823-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维/三维不可压缩磁流体动力系统沉降的一阶线性、完全解耦转速投影格式。所考虑的控制模型是一个强非线性系统,也是一个双鞍点系统。该方案主要采用一阶欧拉半隐式格式进行时间离散化,对强非线性项进行隐显处理,对空间离散化采用混合有限元方法。然后将系统转化为一系列变量完全解耦的线性椭圆方程。更重要的是,该算法中存在旋转项,使得理论分析相当困难。因此,借助Gauge-Uzawa形式,我们导出了无条件能量稳定性。二维/三维数值模拟结果与理论分析相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

2D/3D Fully Decoupled, Unconditionally Energy Stable Rotational Velocity Projection Method for Incompressible MHD System

2D/3D Fully Decoupled, Unconditionally Energy Stable Rotational Velocity Projection Method for Incompressible MHD System

The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信